

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1946-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7											
380h ⁽²⁾	INDF0	Addressing (not a phys	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)							xxxx xxxx	XXXX XXXX
381h ⁽²⁾	INDF1	Addressing (not a phys	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX
382h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000 0000	0000 0000
383h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ac	dress 0 Low	Pointer					0000 0000	uuuu uuuu
385h ⁽²⁾	FSR0H	Indirect Data Memory Address 0 High Pointer							0000 0000	0000 0000	
386h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ac	dress 1 Low	Pointer					0000 0000	uuuu uuuu
387h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ac	dress 1 High	Pointer					0000 0000	0000 0000
388h ⁽²⁾	BSR	-	_	_		I	3SR<4:0>			0 0000	0 0000
389h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
38Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	iter			-000 0000	-000 0000
38Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
38Ch	LATF	PORTF Da	ta Latch							xxxx xxxx	uuuu uuuu
38Dh	LATG	_	_	LATG5	LATG4	LATG3	LATG2	LATG1	LATG0	xx xxxx	uu uuuu
38Eh	_	Unimpleme	ented							_	—
38Fh	_	Unimpleme	ented							_	—
390h	_	Unimpleme	ented							_	—
391h	_	Unimpleme	ented							_	—
392h	_	Unimpleme	ented							_	—
393h	_	Unimpleme	ented							_	—
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimpleme	ented							_	—
398h	_	Unimpleme	ented							_	_
399h	_	Unimpleme	ented							_	—
39Ah	_	Unimpleme	ented							_	—
39Bh	_	Unimpleme	ented							_	_
39Ch	_	Unimpleme	ented							_	_
39Dh	_	Unimpleme	ented							_	_
39Eh	—	Unimpleme	ented							_	_
39Fh	_	Unimpleme	ented							_	_

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

5.2.1.5 TIMER1 Oscillator

The Timer1 Oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 Oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 5.3** "**Clock Switching**" for more information.

FIGURE 5-5: QUARTZ CRYSTAL OPERATION (TIMER1 OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PICmicro[®] Oscillator Design (DS00849)
 - AN943, Practical PICmicro[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)
 - TB097, Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS (DS91097)
 - AN1288, Design Practices for Low-Power External Oscillators (DS01288)

5.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

Figure 5-6 shows the external RC mode connections.

FIGURE 5-6: EXTERNAL RC MODES

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

6.13 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	—	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by hardwa	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

<pre>STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or set to '0' by firmware</pre>
STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or set to '0' by firmware
Unimplemented: Read as '0'
RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set to '1' by firmware 0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	P3CSEL	P3BSEL	P2DSEL	P2CSEL	P2BSEL	CCP2SEL	P1CSEL	P1BSEL	123
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	131
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	330
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	330
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	330
LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	330
LCDSE5	—	—	SE45	SE44	SE43	SE42	SE41	SE40	330
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	131
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		282
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	281
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	197
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297
TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131

TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

13.0 INTERRUPT-ON-CHANGE

The PORTB pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTB pin, or combination of PORTB pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual PORTB pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each PORTB pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCBPx bit of the IOCBP register is set. To enable a pin to detect a falling edge, the associated IOCBNx bit of the IOCBN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCBPx bit and the IOCBNx bit of the IOCBP and IOCBN registers, respectively.

13.3 Interrupt Flags

The IOCBFx bits located in the IOCBF register are status flags that correspond to the interrupt-on-change pins of PORTB. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCBFx bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCBFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 13-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCBF register will be updated prior to the first instruction executed out of Sleep.

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 18-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 18-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

 The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a noninverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2:COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

21.7 **Timer1 Interrupt**

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

21.8 **Timer1 Operation During Sleep**

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{\text{T1SYNC}}$ bit setting.

21.9 ECCP/CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 23.0 "Capture/Compare/PWM Modules".

21.10 ECCP/CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 16.3.1 "Special Event Trigger".

FIGURE 21-2: TIMER1 INCREMENTING EDGE

23.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

23.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	P3CSEL	P3BSEL	P2DSEL	P2CSEL	P2BSEL	CCP2SEL	P1CSEL	P1BSEL	123
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	:3:0>		227
CCPRxL	Capture/Compare/PWM Register x Low Byte (LSB)					205*			
CCPRxH	Capture/Compare/PWM Register x High Byte (MSB)						205*		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	C3IE	CCP2IE	92
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	95
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	C3IF	CCP2IF	96
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	97
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	-	TMR10N	197
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	198
TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of	the 16-bit TMR1 I	Register			193*
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of t	he 16-bit TMR1 F	Register			193*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	128
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	137
TRISG	TRISG7	TRISG6	TRISG5	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	143

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.

* Page provides register information.

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 23-9: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

Note 1: PWM Steering enables outputs in Single mode.

FIGURE 23-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

			-	Period	
00	(Single Output)	PxA Modulated		_	İ
		PxA Modulated			
10	(Half-Bridge)	PxB Modulated	'		i
		PxA Active	 	 	
	(Full-Bridge, Forward)	PxB Inactive		 	
01		PxC Inactive	_ ;		
		PxD Modulated	¦	- 	
		PxA Inactive	_ ¦	1 1 1	
11	(Full-Bridge,	PxB Modulated	=		
	Reverse)	PxC Active	- :		;
		PxD Inactive	_ '	 	

Delay = 4 * Tosc * (PWMxCON<6:0>)

										,	
	5	}	 بر بر	()	; { : :	}	;; , . , .	; 3 ;			<u>.</u>
80%x (CKF = 1 CKE = 0)											; ; ; ;
999989-80 Sister State Matta		· ·	s s s s	* * * * *		· · · · ·	s s s s			: 	; ; ; ; ;
- \$\$\$X\$)%		44. 1927 - - - 111110.		X 88 5 ; , , , , ,	S 53 4 	,X88.3 ; , , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 7. 1997, 7	X. 1993 - 1 		282-82 	
9895x	1	sed////////////////////////////////////	eeel//////////////////////////////////	,		saa <i>liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</i>	;aaa//////////////////////////////////	rad////////////////////////////////////	···///// · 3/	//////////////////////////////////////	,
inorii Sampia	()							44.			
SSPvill Interrupt Story	· · · · · · · · · · · · · · · · · · ·	(())))	• • : • :	,	· · · · · · · · · · · · · · · · · · ·	(() ()	• • • • ; • ; • •	• •	· · ·		
582288 65 8523837 8523837	: ; ; ; ; ; ; ;	; ; ; ;	5 5 5 5	(· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: ; ; ;	5 · · · · · · · · · · · · · · · · · · ·	: : : : :	· · · · · · · · · · · · · · · · · · ·		
Verite Contente				***************						******************************	
detection aceve											

FIGURE 24-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SSx Nov Optional						/
SCKx (CKP = <u>0</u> CKE = 1)			ļ			1 1 1 1
SCKx (CKP = 1 CKE = 1)						
Write to SSPxBUF		1 1 1 1 <u>1 1</u> 1 1				
SDOx	bit 7 bit 6	bit 5 bit 4	bit 3	bit 2 bit 1	bit 0	
SDIx	bit 7			$\rightarrow \bigcirc$	bit 0	
Input Sample	↑ ↑	1 1	<u>†</u> 4	1 1	Ť	
SSPxIF Interrupt Flag						
SSPxSR to SSPxBUF		1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			
Wite Collision Referrior software						

© 2010-2016 Microchip Technology Inc.

24.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
SMP	CKE	D/Ā	Р	S	R/W	UA	BF		
bit 7						•	bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0'				
u = Bit is unchange	ed	x = Bit is unknown	ı	-n/n = Value at F	OR and BOR/Value	at all other Resets			
'1' = Bit is set		'0' = Bit is cleared							
bit 7	SMP: SPI Data In <u>SPI Master mode</u> 1 = Input data sa 0 = Input data sa <u>SPI Slave mode</u> : <u>SMP must be cle</u> In $\frac{1^2C}{Master or S}$ 1 = Slew rate co 0 = Slew rate co	nput Sample bit <u>2</u> mpled at end of dat mpled at middle of o ared when SPI is us <u>Slave mode:</u> ntrol disabled for sta ntrol enabled for hig	a output time Jata output time sed in Slave moo andard speed mode (- gh speed mode (-	le ode (100 kHz and 1 400 kHz)	MHz)				
bit 6	CKE: SPI Clock I In SPI Master or 1 = Transmit occi 0 = Transmit occi In I ² C mode only 1 = Enable input 0 = Disable SMB	Edge Select bit (SPI Slave mode: urs on transition frou urs on transition frou jogic so that thresho us specific inputs	I mode only) n active to Idle c n Idle to active c olds are complian	lock state lock state nt with SMBus spec	oification				
bit 5	D/A: Data/Addres 1 = Indicates that 0 = Indicates that	Idress bit (I ² C mode only) that the last byte received or transmitted was data that the last byte received or transmitted was address							
bit 4	P: Stop bit (I ² C mode only. T 1 = Indicates that 0 = Stop bit was	This bit is cleared wh t a Stop bit has been not detected last	nen the MSSPx r n detected last (t	nodule is disabled, his bit is '0' on Res	SSPEN is cleared.) et)				
bit 3	S: Start bit (I ² C mode only. T 1 = Indicates that 0 = Start bit was	This bit is cleared wh t a Start bit has been not detected last	nen the MSSPx r n detected last (t	nodule is disabled, his bit is '0' on Res	SSPEN is cleared.) et)				
bit 2	R /W: Read/Write This bit holds the bit, Stop bit, or no $ln l^2C$ Slave mod 1 = Read 0 = Write $ln l^2C$ Master mo 1 = Transmit is 0 = Transmit is OR-ing this	bit information (I ² C R <u>W b</u> it information of ACK bit. <u>le:</u> <u>de:</u> in progress not in progress s bit with SEN, RSE	mode only) following the las	t address match. Th	nis bit is only valid fro ate if the MSSPx is i	m the address mat	ch to the next Start		
bit 1	UA: Update Addr 1 = Indicates that 0 = Address does	ress bit (10-bit I ² C n t the user needs to u s not need to be upo	node only) update the addre dated	ess in the SSPxADE) register				
bit 0	BF: Buffer Full St <u>Receive (SPI and</u> 1 = Receive com 0 = Receive not of <u>Transmit (l^2C mo 1 = Data transmit</u> 0 = Data transmit	tatus bit <u>d I²C modes):</u> plete, SSPxBUF is t complete, SSPxBUF ide only): t in progress (does no t complete (does no	full ⁻ is empty not include th <u>e A</u> t include the ACI	CK and Stop bits), C and Stop bits), SS	SSPxBUF is full SPxBUF is empty				

REGISTER 24-1: SSPxSTAT: SSPx STATUS REGISTER

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2 "Clock Source Types"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.4.1** "**Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0					
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN					
bit 7	•						bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'						
u = Bit is unch	anged	x = Bit is unki	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets									
'1' = Bit is set		'0' = Bit is cle	ared									
bit 7	ABDOVF: Au	ito-Baud Detec	t Overflow bit									
	Asynchronous mode: 1 = Auto-baud timer overflowed 0 = Auto-baud timer did not overflow Synchronous mode: Don't care											
bit 6	RCIDL: Rece	ive Idle Flag bi	t									
	Asynchronous mode: 1 = Receiver is Idle 0 = Start bit has been received and the receiver is receiving Synchronous mode: Don't care											
bit 5	Unimplemen	Unimplemented: Read as '0'										
bit 4	SCKP: Synch	ronous Clock	Polarity Select	bit								
	Asynchronous	<u>s mode</u> :										
	1 = Transmit i 0 = Transmit i	inverted data to non-inverted d	o the TXx/CKx ata to the TXx	: pin /CKx pin								
	Synchronous 1 = Data is clo 0 = Data is clo	<u>mode</u> : ocked on rising ocked on falling	g edge of the c g edge of the c	lock clock								
bit 3	BRG16: 16-b 1 = 16-bit Ba 0 = 8-bit Bau	it Baud Rate G ud Rate Gener d Rate Genera	enerator bit ator is used ator is used									
bit 2	Unimplemen	ted: Read as '	0'									
bit 1	WUE: Wake-u	up Enable bit										
	Asynchronous	<u>s mode</u> :										
	1 = Receiver will autom 0 = Receiver <u>Synchronous</u> Don't care	is waiting for a atically clear a is operating no <u>mode</u> :	a falling edge. fter RCIF is se ormally	No character t	will be received	l, byte RCIF will	l be set. WUE					
bit 0	ABDEN: Auto	-Baud Detect	Enable bit									
	Asynchronous	<u>s mode</u> :										
	1 = Auto-Bau 0 = Auto-Bau <u>Synchronous</u> Don't care	ud Detect mode ud Detect mode <u>mode</u> :	e is enabled (c e is disabled	lears when au	to-baud is com	plete)						

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	_	_	_
115.2k	_	_	_	_	_	_	115.2k	0.00	1	—	_	_

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)
300	300	0.00	26666	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	0.00	6666	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.01	3332	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9604	0.04	832	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	767	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.18k	-0.08	416	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	115.9	0.64	68	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	Actual Rate	% Error	SPxBRGH: SPxBRGL (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0.00	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

DC CHA	RACTER	ISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
		Program Memory Programming Specifications							
D110	VIHH	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 3, Note 4)		
D111	IDDP	Supply Current during Programming	—	_	10	mA			
D112	VPBE	VDD for Bulk Erase	2.7	—	VDDMAX	V			
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V			
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	_		1.0	mA			
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA			
		Data EEPROM Memory							
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C		
D117	VDRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V			
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms			
D119	TRETD	Characteristic Retention	_	40	_	Year	-40°C to +55°C Provided no other specifications are violated		
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C		
		Program Flash Memory							
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)		
D122	VPRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V			
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms			
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated		

30.6 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB[®] ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.