

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1946t-i-mr

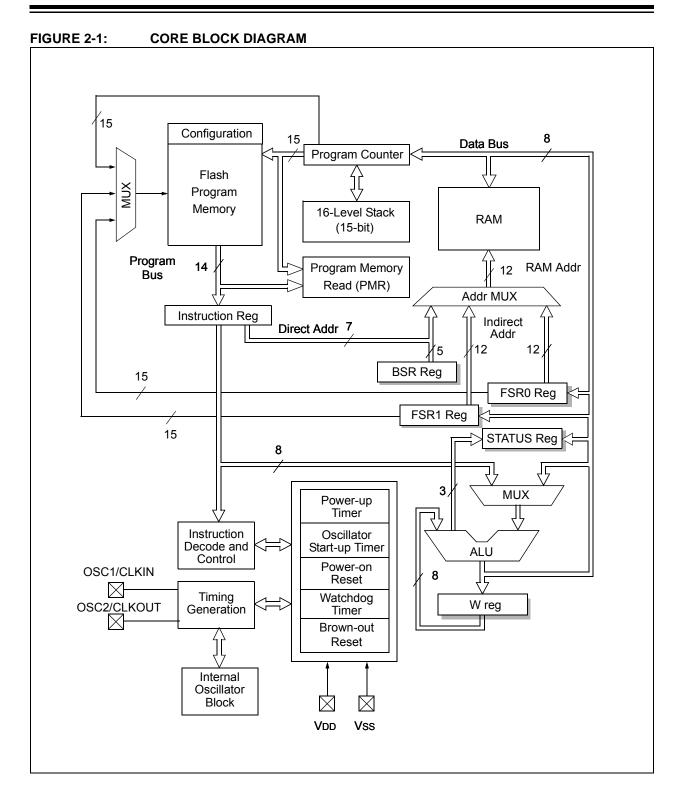
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1946/47 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/CPS0/SEG33	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel input.
	CPS0	AN	_	Capacitive sensing input 0.
	SEG33	_	AN	LCD Analog output.
RA1/AN1/CPS1/SEG18	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel input.
	CPS1	AN	_	Capacitive sensing input.
	SEG18	_	AN	LCD Analog output.
RA2/AN2/VREF-/CPS2/SEG34	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	_	A/D Channel input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	CPS2	AN		Capacitive sensing input.
	SEG34	_	AN	LCD Analog output.
RA3/AN3/VREF+/CPS3/SEG35	RA3	TTL	CMOS	General purpose I/O.
	AN3	AN		A/D Channel input.
	VREF+	AN		A/D Voltage Reference input.
	CPS3	AN		Capacitive sensing input.
	SEG35	—	AN	LCD Analog output.
RA4/T0CKI/SEG14	RA4	TTL	CMOS	General purpose I/O.
	TOCKI	ST	_	Timer0 clock input.
	SEG14	—	AN	LCD Analog output.
RA5/AN4/CPS4/SEG15	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel input.
	CPS4	AN	_	Capacitive sensing input.
	SEG15	_	AN	LCD Analog output.
RA6/OSC2/CLKOUT/SEG36	RA6	TTL	CMOS	General purpose I/O.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
	SEG36	_	AN	LCD Analog output.
RA7/OSC1/CLKIN/SEG37	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	—	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	CMOS		External clock input (EC mode).
	SEG37	—	AN	LCD Analog output.
RB0/INT/SRI/FLT0/SEG30	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	INT	ST	_	External interrupt.
	SRI	_	ST	SR Latch input.
	FLT0	ST	_	ECCP Auto-shutdown Fault input.
	SEG30	_	AN	LCD analog output.
RB1/SEG8	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	SEG8	<u> </u>	AN	LCD Analog output.

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C


XTAL = Crystal

HV = High Voltage

levels

Note 1: Pin function is selectable via the APFCON register.

PIC16(L)F1946/1947

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
- Data EEPROM memory⁽¹⁾

	Pro	Program Memory Control".						
	Sec	tion 11	.0 "Data	EEPR	ОМ а	nd Fl	ash	
	the	EECO	N regis	ters is	dese	cribed	l in	
	met	hod to a	access F	lash m	emor	y thro	ugh	
Note 1:	The	Data	EEPRO	M Mei	mory	and	the	

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1946/47 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1 and 3-2).

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address		
PIC16(L)F1946	8,192	1FFFh		
PIC16(L)F1947	16,384	3FFFh		

PIC16(L)F1946/1947

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 15	nk 15										
780h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								xxxx xxxx	xxxx xxxx
781h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data me	mory		xxxx xxxx	XXXX XXXX
782h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
783h ⁽²⁾	STATUS				TO	PD	Z	DC	С	1 1000	q quuu
784h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	ldress 0 Low	Pointer					0000 0000	uuuu uuuu
785h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad	ldress 0 High	Pointer					0000 0000	0000 0000
786h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	ldress 1 Low	Pointer					0000 0000	uuuu uuuu
787h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	ldress 1 High	Pointer					0000 0000	0000 0000
788h ⁽²⁾	BSR	_	-	-		I	BSR<4:0>			0 0000	0 0000
789h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
78Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	iter			-000 0000	-000 0000
78Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
78Ch	_	Unimpleme	nted							_	_
78Dh	_	Unimpleme	Unimplemented								_
78Eh	_	Unimpleme	Unimplemented								_
78Fh	_	Unimpleme	nted							-	_
790h	_	Unimpleme	nted							-	_
791h	LCDCON	LCDEN	SLPEN	WERR	_	CS<	1:0>	LMU	X<1:0>	000- 0011	000- 0011
792h	LCDPS	WFT	BIASMD	LCDA	WA		LP<3	3:0>		0000 0000	0000 0000
793h	LCDREF	LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	-	000- 000-	000- 000-
794h	LCDCST	_	_	_	_	_	L	.CDCST<2:0)>	000	000
795h	LCDRL	LRLA	P<1:0>	LRLBI	P<1:0>	_		LRLAT<2:0	>	0000 -000	0000 -000
796h	_	Unimpleme	nted							-	_
797h	_	Unimpleme	Unimplemented							-	_
798h	LCDSE0		SE<7:0>							0000 0000	uuuu uuuu
799h	LCDSE1		SE<15:8>							0000 0000	uuuu uuuu
79Ah	LCDSE2		SE<23:16>							0000 0000	uuuu uuuu
79Bh	LCDSE3				SE<31	:24>				0000 0000	uuuu uuuu
79Ch	LCDSE4				SE<39	:32>				0000 0000	uuuu uuuu
79Dh	LCDSE5	_	_			SE<45:	40>			00 0000	uu uuuu
79Eh	_	Unimpleme	nted							_	_

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1:

1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

7.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch		x = Bit is unkr		-	at POR and BO		her Resets
'1' = Bit is set		'0' = Bit is cle					
bit 7		nterrupt Enable					
	1 = Enables a 0 = Disables	all active interru all interrupts	ıpts				
bit 6	1 = Enables a	eral Interrupt E all active periph all peripheral ir	eral interrupts	3			
bit 5	1 = Enables t	er0 Overflow Ir he Timer0 inter the Timer0 inte	rupt	e bit			
bit 4	1 = Enables t	ternal Interrupt he INT externa the INT externa	l interrupt				
bit 3	1 = Enables t	upt-on-Change he interrupt-on the interrupt-or	-change				
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow						
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur						
bit 0	1 = When at I	upt-on-Change east one of the he interrupt-on	interrupt-on-	change pins ch			

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7	0100	Lifeo					bit (
Legend:							
R = Readable		W = Writable		•	mented bit, read		
S = Bit can or	-	x = Bit is unk			at POR and BO		ther Resets
'1' = Bit is set		'0' = Bit is cle	eared	HC = Bit is ci	eared by hardw	are	
bit 7	EEPGD: Flas	sh Program/Da	ta EEPROM M	emory Select	bit		
		s program spa s data EEPRO	ce Flash memo M memory	ory			
bit 6			EEPROM or C	Configuration 3	Select bit		
			n, User ID and				
		-	m or data EEP	ROM Memory	/		
bit 5		Write Latches	•			—	
					EPGD = 1 (prog		
		next WR con ated.	nmand does no	ot initiate a w	rite; only the p	program memor	ry latches an
			mand writes a v	alue from EEI	DATH:EEDATL	into program m	emory latche
	and	initiates a write	e of all the data	stored in the	program memo	ry latches.	
		and EEPGD =	0: (Accessing of	lata EEPRON	4)		
					e to the data E	EPROM.	
bit 4	FREE: Progra	am Flash Eras	e Enable bit				
	If CFGS = 1 ((Configuration	space) OR <u>CF</u>	GS = 0 and El	EPGD = 1 (prog	gram Flash):	
				on the next \	NR command	(cleared by h	ardware afte
		pletion of eras	e). peration on the	novt M/P.com	mand		
	0 - Fen		peration on the		imanu.		
			0: (Accessing				
	•			will initiate bot	h a erase cycle	and a write cyc	de.
bit 3		PROM Error F	•				
			improper prog et attempt (write		sequence atte	mpt or termina	tion (bit is se
			operation comp		,		
bit 2		ram/Erase Ena			,-		
	-	rogram/erase o					
	0 = Inhibits p	programming/e	rasing of progra	am Flash and	data EEPROM		
bit 1	WR: Write Co	ontrol bit					
					/erase operatio		
			ned and the bit e set (not cleare		hardware once	operation is co	mplete.
					OM is complete	e and inactive.	
bit 0	RD: Read Co				F		
	1 = Initiates	an program F	lash or data E	EPROM read	d. Read takes	one cycle. RD	is cleared in
	hardware	e. The RD bit o	lash or data E an only be set ram Flash or d	(not cleared)		one cycle. RD	is cleared i

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_			CHS<4:0>			GO/DONE	ADON	161
ANSELG	—	-	_	ANSG4	ANSG3	ANSG2	ANSG1	_	144
CCPxCON	PxM<	1:0> (1)	DCxB	<1:0>		CCPx	∕l<3:0>		227
CMOUT	—	_	_	_	_	MC3OUT	MC2OUT	MC1OUT	179
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0		—	C1NCI	H<1:0>	179
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	—	C2NCI	H<1:0>	179
CPSCON0	CPSON	CPSRM	_	_	CPSRN	IG<1:0>	CPSOUT	TOXCS	322
CPSCON1	—	_	_	_		CPSCI	H<3:0>		323
LATG	—	_	—	LATG4	LATG3	LATG2	LATG1	LATG0	143
LCDCON	LCDEN	SLPEN	WERR	_	CS<	1:0>	LMUX	<1:0>	326
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	330
LCDSE5	—	_	SE45	SE44	SE43	SE42	SE41	SE40	330
PORTG	—	_	RG5	RG4	RG3	RG2	RG1	RG0	143
TRISG	—		TRISG5	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	143
WPUG	—	_	WPUG5	_	_	—	—	—	144

TABLE 12-17:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTG
--------------	--

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTG. **Note 1:** Applies to ECCP modules only.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

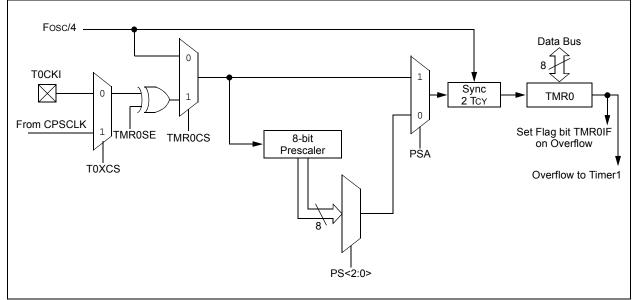
The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note:	The value written to the TMR0 register					
	can be adjusted, in order to account for					
	the two instruction cycle delay when					
	TMR0 is written.					


20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

21.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay, similar to the OST delay can be implemented in software by clearing the TMR1IF bit, then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and is reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 21.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN PxDC<6:0>									
bit 7							bit (
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	PxRSEN: PWM Restart Enable bit								
	 1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 								
	0 = Upon a	0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM							

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER⁽¹⁾

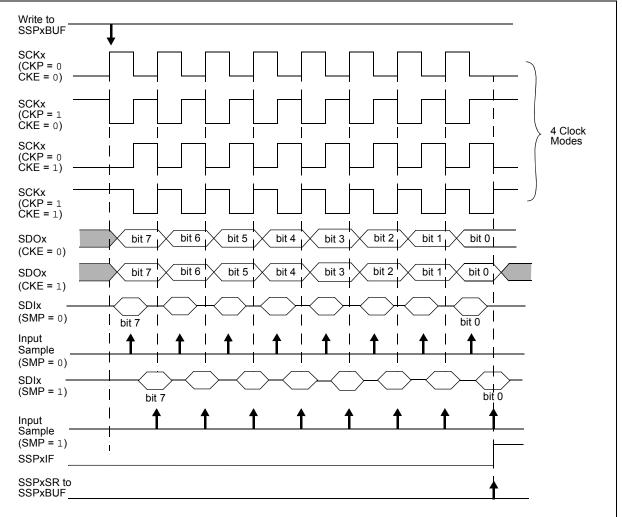
bit 6-0 PxDC<6:0>: PWM Delay Count bits

PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

24.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 24-5) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 24-6, Figure 24-8 and Figure 24-9, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 24-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 24-6: SPI MODE WAVEFORM (MASTER MODE)

24.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see **Section 24.5.6 "Clock Stretching"** for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done, preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then, the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

24.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

24.5.3.2 7-bit Transmission

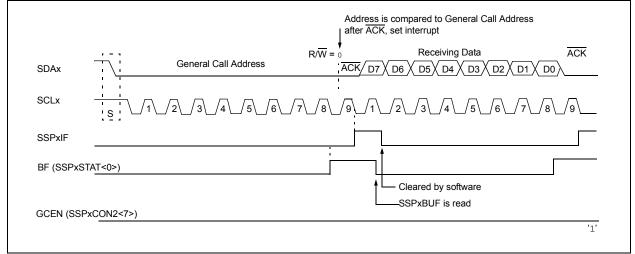
A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 24-17 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by the user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP is automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs, the clock will be stretched.

 ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than on the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

24.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address, regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 24-23 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication, progressing as it would normally.

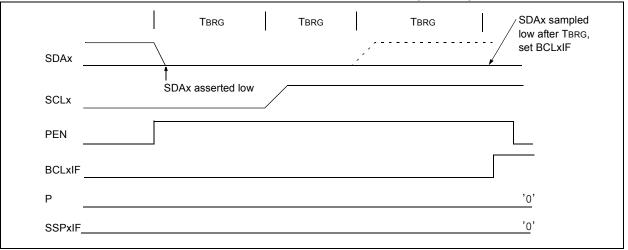
24.5.9 SSPx MASK REGISTER

An SSPx Mask (SSPxMSK) register (Register 24-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSPx operation until written with a mask value.

The SSPx Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0>, only. The SSPx mask has no effect during the reception of the first (high) byte of the address.


24.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 24-37). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 24-38).

FIGURE 24-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 24-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

25.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode would typically be used in RS-232 systems. The receiver block diagram is shown in Figure 25-2. The data is received on the RXx/DTx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is made via the RCxREG register.

25.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RXx/DTx I/O pin as an input.

Note 1: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

If the RXx/DTx pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

25.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 25.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCxIF interrupt flag bit of the PIR1/PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note:	If the receive FIFO is overrun, no additional					
	characters will be received until the overrun					
	condition is cleared. See Section 25.1.2.5					
	"Receive Overrun Error" for more					
	information on overrun errors.					

25.1.2.3 Receive Interrupts

The RCxIF interrupt flag bit of the PIR1/PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCxIF interrupts are enabled by setting the following bits:

- RCxIE interrupt enable bit of the PIE1/PIE4 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

25.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive				
	FIFO have framing errors, repeated reads				
	of the RCxREG will not clear the FERR				
	bit.				

25.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated If a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

25.1.2.6 Receiving 9-bit Characters

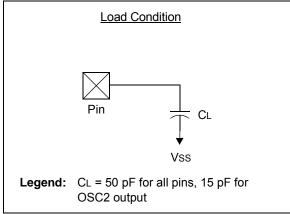
The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set, the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

25.1.2.7 Address Detection

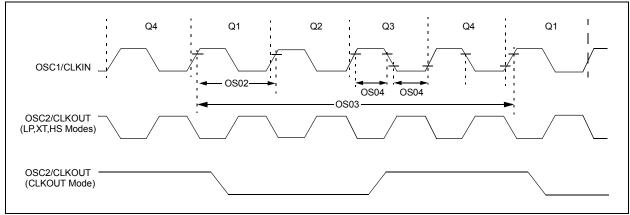
A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.


30.8 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

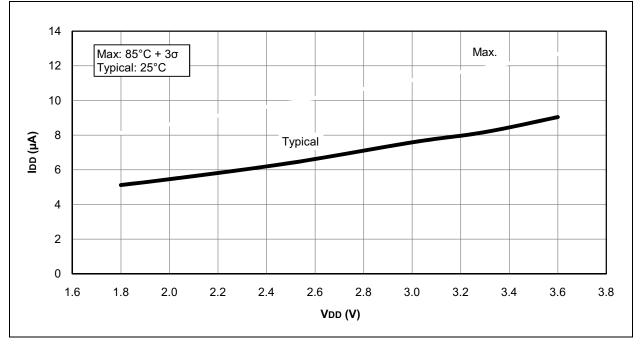
2. 1990		1			
Т					
F	Frequency	Т	Time		
Lowerc	ase letters (pp) and their meanings:				
рр					
сс	CCP1	OSC	OSC1		
ck	CLKOUT	rd	RD		
CS	CS	rw	RD or WR		
di	SDI	SC	SCK		
do	SDO	SS	SS		
dt	Data in	tO	TOCKI		
io	I/O PORT	t1	T1CKI		
mc	MCLR	wr	WR		
Upperc	Uppercase letters and their meanings:				
S					
F	Fall	Р	Period		
Н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		

FIGURE 30-5: LOAD CONDITIONS

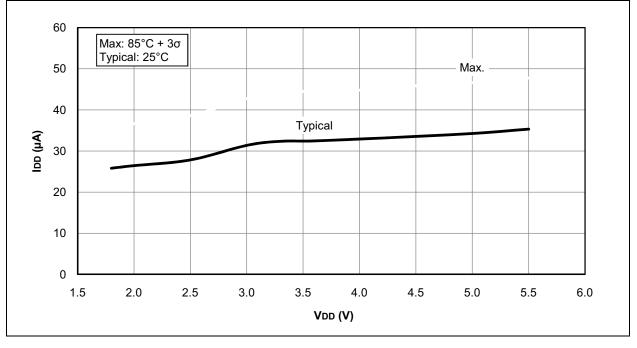
30.9 AC Characteristics: PIC16(L)F1946/47-I/E

FIGURE 30-6: CLOCK TIMING

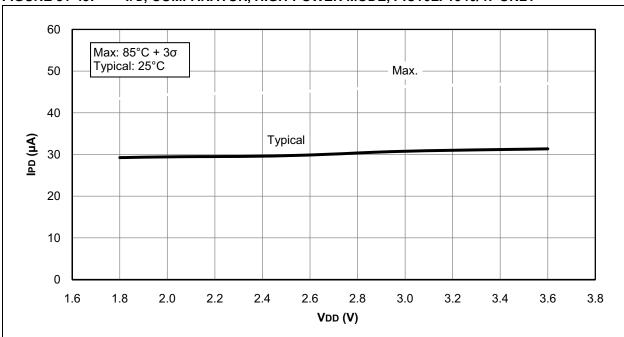
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	_	_	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator

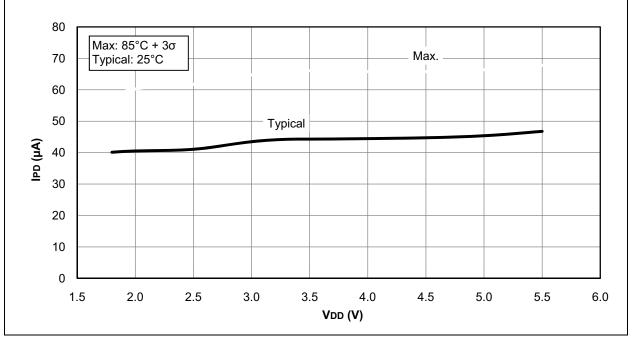

* These parameters are characterized but not tested.

† Data in ⁱ Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

PIC16(L)F1946/47





PIC16(L)F1946/47

FIGURE 31-49: IPD, COMPARATOR, HIGH-POWER MODE, PIC16LF1946/47 ONLY

