

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1947t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
CALL constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

TABLE 3-5: PIC16(L)F1946/47 MEMORY MAP, BANKS 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	ANSELF	48Ch	—	50Ch	—	58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	ANSELG	48Dh	WPUG	50Dh	—	58Dh	_	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	—	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	_	491h	RC2REG	511h	_	591h	_	611h	—	691h	_	711h	—	791h	
412h	—	492h	TX2REG	512h	—	592h	_	612h	—	692h	—	712h	—	792h	
413h	_	493h	SP2BRGL	513h	_	593h	_	613h	—	693h	_	713h	—	793h	
414h	—	494h	SP2BRGH	514h	_	594h	_	614h	—	694h	_	714h	—	794h	
415h	TMR4	495h	RC2STA	515h	_	595h	_	615h	—	695h	_	715h	—	795h	
416h	PR4	496h	TX2STA	516h	_	596h	_	616h	—	696h	_	716h	—	796h	
417h	T4CON	497h	BAUD2CON	517h	_	597h	_	617h	_	697h	_	717h	_	797h	
418h	_	498h	_	518h	_	598h	_	618h	_	698h	—	718h	_	798h	
419h	_	499h	_	519h	_	599h		619h	—	699h	_	719h	_	799h	
41Ah	_	49Ah	_	51Ah	_	59Ah	_	61Ah	_	69Ah		71Ah	_	79Ah	
41Bh		49Bh	—	51Bh	—	59Bh	—	61Bh	—	69Bh		71Bh	—	79Bh	See Table 3-8
41Ch	TMR6	49Ch	_	51Ch	_	59Ch	_	61Ch	—	69Ch	_	71Ch	—	79Ch	
41Dh	PR6	49Dh	—	51Dh	—	59Dh	—	61Dh	—	69Dh		71Dh	—	79Dh	
41Eh	16CON	49Eh	—	51Eh	—	59Eh	—	61Eh	—	69Eh		71Eh	—	79Eh	
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	_	71Fh	_	79Fh	
420n		4A0h		520n		SAUN		620n	General Purpose	6AUN		720n		7A0n	
	General		General		General		General		Register						
	Purpose		Purpose		Purpose		Purpose		40 Dytes		Unimplemented		Unimplemented		
	80 Bytes ⁽¹⁾		Unimplemented		Read as 0		Read as 0								
	50 Dy 100		50 0,000		50 Dy 100		50 Dy 100		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh						
47Fh		4FFh		57Fh		5EEh		67Fh		6FFh		77Fh		7FFh	

Legend:= Unimplemented data memory locations, read as '0'Note1:Not available on PIC16F1946.

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	
bit 7		·					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	mented bit, read	as '0'			
S = Bit can onl	y be set	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cl	eared by hardw	are		
bit 7	EEPGD: Flas	h Program/Da	ta EEPROM M	emory Select	bit			
	1 = Accesses	s program spa	ce Flash memo	ory				
hit 6	CEGS: Elash	Brogram/Data		Configuration	Soloct bit			
bit o	1 = Accesses	s Configuration	User ID and I	Device ID Rev	nisters			
	0 = Accesses	s Flash Progra	m or data EEP	ROM Memory	/			
bit 5	LWLO: Load	Write Latches	Only bit					
	If CFGS = 1 (Configuration	space) OR <u>CF</u>	GS = 0 and E	EPGD = 1 (prog	ram Flash):		
	1 = The	next WR com	mand does no	ot initiate a w	rite; only the p	rogram memoi	y latches are	
	upda ∩ = The	ated.	nand writes a v	alue from EEI	οδτη έξερατι ι	nto program m	emory latches	
	and	initiates a write	e of all the data	stored in the	program memo	ry latches.	childry lateries	
	$\frac{\text{If CFGS} = 0 \text{ a}}{1 \text{ WLO is ignored}}$	and EEPGD =	<u>0:</u> (Accessing o NR command i	data EEPRON initiates a writ	1) e to the data EE	PROM		
hit 4	FREE Progra	am Flash Fras	e Enable bit					
	If CFGS = 1 (Configuration :	space) OR CF(GS = 0 and El	EPGD = 1 (prog	ram Flash):		
	1 = Perfo	orms an eras	e operation o	n the next \	NR command	(cleared by h	ardware after	
	com	pletion of eras	e).					
	0 = Perio	orms a write of	peration on the	next WR con	nmand.			
	If EEPGD = 0	and CFGS =	0: (Accessing	data EEPRO	<u>(M)</u>			
	FREE is ignor	red. The next \	VR command v	will initiate bot	th a erase cycle	and a write cyc	le.	
bit 3	WRERR: EEF	PROM Error FI	ag bit					
	1 = Condition	n indicates an	improper prog	ram or erase	sequence atter	mpt or termina	tion (bit is set	
	0 = The prog	ram or erase o	peration comp	leted normally	к ы.). V.			
bit 2	WREN: Progr	ram/Erase Ena	ible bit		,-			
	1 = Allows pr	ogram/erase o	cycles					
	0 = Inhibits p	rogramming/e	rasing of progra	am Flash and	data EEPROM			
bit 1	WR: Write Co	ontrol bit						
	1 = Initiates a	a program Flas	h or data EEPI	ROM program	n/erase operation	n.		
	The WR	bit can only be	set (not cleare	is cleared by ed) in software	hardware once	operation is co	mpiete.	
	0 = Program/	/erase operatio	on to the Flash	or data EEPR	ROM is complete	and inactive.		
bit 0	RD: Read Control bit							
	1 = Initiates a	an program F	lash or data E	EPROM read	d. Read takes	one cycle. RD	is cleared in	
	hardware	e. The RD bit c	an only be set	(not cleared) i	in software.			
		i initiate a prog	an Fiash of Q	aia EEPRUM	udia redu.			

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- CCP3/P3C output
- CCP3/P3B output
- CCP2/P2D output
- CCP2/P2C output
- CCP2/P2B output
- CCP2/P2A output
- CCP1/P1C output
- CCP1/P1B output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

12.3 **PORTA Registers**

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12-1 shows how to initialize PORTA.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.3.1 ANSELA REGISTER

The ANSELA register (Register 12-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

PORTA FUNCTIONS AND OUTPUT 12.3.2 PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority list.

TABLE 12-2:	PORTA OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
RA0	SEG33 (LCD) RA0
RA1	SEG18 RA1
RA2	SEG34 (LCD) RA2
RA3	SEG35 (LCD) RA3
RA4	SEG14 (LCD) RA4
RA5	SEG15 (LCD) RA5
RA6	OSC2 (enabled by Configuration Word) CLKOUT (enabled by Configuration Word) SEG36 (LCD) RA6
RA7	OSC1/CLKIN (enabled by Configuration Word) SEG37 (LCD) RA7

Note 1: Priority listed from highest to lowest.

12.5 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.5.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-9). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.5.2 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference **Section 13.0 "Interrupt-On-Change"** for more information.

12.5.3 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions, such as the EUSART RX signal, override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RB0	SEG30 (LED) SRI (SR Latch) RB0
RB1	SEG8 (LCD) RB1
RB2	SEG9 (LCD) RB2
RB3	SEG10 (LCD) RB3
RB4	SEG11 (LCD) RB4
RB5	SEG29 (LCD) RB5
RB6	ICSPCLK (Programming) ICDCLK (enabled by Configuration Word) SEG38 (LCD) RB6
RB7	ICSPDAT (Programming) ICDDAT (enabled by Configuration Word) SEG39 (LCD) RB7

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

18.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four analog pins to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog
	input, the appropriate bits must be set in
	the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0 "Electrical Specifications"** for more details.

18.9 Interaction with ECCP Logic

The comparators can be used as general purpose comparators. Their outputs can be brought out to the CxOUT pins. When the ECCP Auto-Shutdown is active it can use one or both comparator signals. If auto-restart is also enabled, the comparators can be configured as a closed loop analog feedback to the ECCP, thereby, creating an analog controlled PWM.

Note: When the Comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

18.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

> Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7	PxRSEN: P	WM Restart Ena	able bit						
1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away; the DMM restarts automatically.									
	0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM								

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER⁽¹⁾

bit 6-0 PxDC<6:0>: PWM Delay Count bits

PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

FIGURE 24-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

24.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI mode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 24.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

24.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSPx clock is much faster than the system clock.

In Slave mode, when MSSPx interrupts are enabled, after the master completes sending data, an MSSPx interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSPx interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSPx interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE4	—	—	RC2IE	TX2IE	—	—	BCL2IE	SSP2IE	94
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	95
PIR4	—	—	RC2IF	TX2IF	—	—	BCL2IF	SSP2IF	98
SSP1BUF	Synchronou	s Serial Port F	Receive Buffe	er/Transmit Re	egister				236*
SSP2BUF	BUF Synchronous Serial Port Receive Buffer/Transmit Register								236*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		282
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	285
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	281
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		282
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	285
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	281
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	134
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	140

TABI F 24-1.	SUMMARY OF REGISTERS	ASSOCIATED W	ITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx in SPI mode.

Page provides register information.

24.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I²C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCLx)
- · Serial Data (SDAx)

Figure 24-2 and Figure 24-3 show the block diagrams of the MSSPx module when operating in $I^{2}C$ mode.

Both the SCLx and SDAx connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 24-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDAx line while the SCLx line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 24-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDAx line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCLx line is held low. Transitions that occur while the SCLx line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an ACK bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an \overrightarrow{ACK} bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDAx line while the SCLx line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols:

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

24.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 24-27).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

24.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

24.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

24.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overrightarrow{ACK} = 0$) and is set when the slave does not Acknowledge ($\overrightarrow{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

24.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all eight bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

26.2.2 CURRENT RANGES

The capacitive sensing oscillator can operate in one of seven different power modes. The power modes are separated into two ranges: the low range and the high range.

When the oscillator's low range is selected, the fixed internal voltage references of the capacitive sensing oscillator are being used. When the oscillator's high range is selected, the variable voltage references supplied by the FVR and DAC modules are being used. Selection between the voltage references is controlled by the CPSRM bit of the CPSCON0 register. See **Section 26.2.1 "Voltage Reference Modes"** for more information.

Within each range there are three distinct power modes: low, medium and high. Current consumption is dependent upon the range and mode selected. Selecting Power modes within each range is accomplished by configuring the CPSRNG <1:0> bits in the CPSCON0 register. See Table for proper power mode selection. The remaining mode is a Noise Detection mode that resides within the high range. The Noise Detection mode is unique in that it disables the sinking and sourcing of current on the analog pin but leaves the rest of the oscillator circuitry active. This reduces the oscillation frequency on the analog pin to zero and also greatly reduces the current consumed by the oscillator module.

When noise is introduced onto the pin, the oscillator is driven at the frequency determined by the noise. This produces a detectable signal at the comparator output, indicating the presence of activity on the pin.

Figure 26-2 shows a more detailed drawing of the current sources and comparators associated with the oscillator.

TABLE 26-1:	POWER MODE SELECTION
-------------	----------------------

CPSRM	Range	CPSRNG<1:0>	Current Range ⁽¹⁾
		00	Noise Detection
1	High	01	Low
L		10	Medium
		11	High
		00	Off
0	Law	01	Low
U	LOW	10	Medium
		11	High

Note 1: See Power-Down Currents (IPD) in Section 30.0 "Electrical Specifications" for more information.

26.2.3 TIMER RESOURCES

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

26.2.4 FIXED TIME BASE

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note:	The fixed time base can not be generated					
	by the timer resource that the capacitive					
	sensing oscillator is clocking.					

26.2.4.1 Timer0

To select Timer0 as the timer resource for the CPS module:

- Set the T0XCS bit of the CPSCON0 register.
- Clear the TMR0CS bit of the OPTION_REG register.

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

26.3 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

FIGURE 27-13: TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
LCDDATA22	SEG39 COM3	SEG38 COM3	SEG37 COM3	SEG36 COM3	SEG35 COM3	SEG34 COM3	SEG33 COM3	SEG32 COM3	330		
LCDDATA23	—	—	SEG45 COM3	SEG44 COM3	SEG43 COM3	SEG42 COM3	SEG41 COM3	SEG40 COM3	330		
LCDPS	WFT	BIASMD	LCDA	WA		LP<	:3:0>		327		
LCDREF	LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	—	328		
LCDRL	LRLAF	P<1:0>	LRLBF	P<1:0>	—		337				
LCDSE0				SE	<7:0>	7:0>					
LCDSE1	SE<15:8>								330		
LCDSE2		SE<23:16>									
LCDSE3				SE<	:31:24>	31:24>					
LCDSE4				SE<	:39:32>	330					
LCDSE5	—	—			SE<	SE<45:40>					
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	C3IE	CCP2IE	92		
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	C3IF	CCP2IF	96		
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	197		

TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION (CONTINUED)

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	ram Io. Sym. Characteristic			Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	20	_	_	ns	
CC02*	TccH	CCPx Input High Time No Prescaler		0.5Tcy + 20	_	_	ns	
			With Prescaler	20	_	_	ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	_		ns	N = prescale value (1, 4 or 16)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-8: PIC16(L)F1946/47 A/D CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Standard Operating Conditions (unless otherwise stated)

Operating temperature TA = 25°C								
Para m No.	Sym.	Characteristic	Min.	Тур†	Max.	Unit s	Conditions	
AD01	NR	Resolution	—		10	bit		
AD02	EIL	Integral Error		_	±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	—		±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	_		±2.5	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage ⁽⁴⁾	1.8		VDD	V	VREF = (VREF+ minus VREF-)	
AD07	VAIN	Full-Scale Range	Vss		VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_		10	kΩ	Can go higher if external 0.01 μF capacitor is present on input pin.	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** When ADC is OFF, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.
- **4:** ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is selected as the reference input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X28)	X1			0.30		
Contact Pad Length (X28)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1