

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f301k8u7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F301x6/8 device features and peripheral counts	11
Table 3.	External analog supply values for analog peripherals	14
Table 4.	STM32F301x6/8 peripheral interconnect matrix	16
Table 5.	Timer feature comparison.	22
Table 6.	Comparison of I2C analog and digital filters	26
Table 7.	STM32F301x6/8 I ² C implementation	26
Table 8.	USART features	27
Table 9.	STM32F301x6/8 SPI/I2S implementation.	28
Table 10.	Capacitive sensing GPIOs available on STM32F301x6/8 devices	29
Table 11.	No. of capacitive sensing channels available on	
	STM32F301x6/8 devices	29
Table 12.	Legend/abbreviations used in the pinout table	35
Table 13.	STM32F301x6/8 pin definitions	36
Table 14.	Alternate functions for Port A	43
Table 15.	Alternate functions for Port B	45
Table 16.	Alternate functions for Port C	47
Table 17.	Alternate functions for Port D	48
Table 18.	Alternate functions for Port F	48
Table 19.	STM32F301x6 STM32F301x8 peripheral register boundary addresses	. 50
Table 20.	Voltage characteristics	. 55
Table 21	Current characteristics	56
Table 22	Thermal characteristics	56
Table 23	General operating conditions	57
Table 24	Operating conditions at power-up / power-down	58
Table 25	Embedded reset and power control block characteristics	58
Table 26	Programmable voltage detector characteristics	59
Table 27	Embedded internal reference voltage	60
Table 28	Internal reference voltage calibration values	60
Table 29	Typical and maximum current consumption from VDD supply at VDD = 3.6V	61
Table 30	Typical and maximum current consumption from the V_{PDA} supply	63
Table 31	Typical and maximum V_{DD} consumption in Stop and Standby modes	63
Table 32	Typical and maximum V_{DD} consumption in Stop and Standby modes	64
Table 33	Typical and maximum v_{DDA} consumption in Gop and Standby modes	64
Table 34	Typical current consumption in Run mode, code with data processing running from Flag	sh66
Table 35	Typical current consumption in Sleep mode, code running from Flash or RAM	67
Table 36	Switching output I/O current consumption	69
Table 37	Perinheral current consumption	71
Table 38	Low-nower mode wakeun timings	72
Table 30	Wakeun time using USART	72
Table 40	High-speed external user clock characteristics	73
Table 41	I ow-speed external user clock characteristics	74
Table 42		
Table 42.	$I SE oscillator characteristics (f_{} = 32.768 \text{ kHz})$	73
Table 43.	HSI oscillator characteristics $(I_{\text{LSE}} - 52.700 \text{ NLZ}) \dots \dots$	70
Table 15	I SI oscillator characteristics	20. 20
Table 45.		
Table 40.	Flash memory characteristics	
	I IASH INCHIVIY UIAI AUCHSUUS	

Figure 45.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package outline	126
Figure 46.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package recommended footprint	127
Figure 47.	UFQFPN32 marking example (package top view)	128

57

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- V_{SS}, V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
 provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators, operational amplifier, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must always be greater than or equal to the V_{DD} voltage level and must be provided first.

Analog peripheral	Minimum V _{DDA} supply	Maximum V _{DDA} supply
ADC/COMP	2.0 V	3.6 V
DAC/OPAMP	2.4 V	3.6 V

Table 3. External analog supply values for analog peripherals

• V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.5.2 Power supply supervisor

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.17 Inter-integrated circuit interfaces (I²C)

The devices feature three I^2C bus interfaces which can operate in multimaster and slave mode. Each I2C interface can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes.

All I²C interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 6. Com	parison of I2C	analog and d	igital filters
			great theory

In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. It also has a clock domain independent from the CPU clock, allowing the I2Cx (x=1,3) to wake up the MCU from Stop mode on address match.

The I2C interfaces can be served by the DMA controller.

Refer to Table 7 for the features available in I2C1, I2C2 and I2C3.

Table 7. STM32F301x6/8 I²C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х
Independent clock	Х	Х	Х
SMBus	Х	Х	Х
Wakeup from STOP	Х	Х	Х

1. X = supported.

DocID025146 Rev 6

41/135

	Table 13. STM32F301x6/8 pin definitions (continued)											
	Pin Nu	umber										
UQFN32	WLCSP49	LQFP48	LQFP64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
-	-	-	51	PC10	I/O	FT	-	EVENTOUT, SPI3_SCK/I2S3_CK, USART3_TX	-			
-	-	-	52	PC11	I/O	FT	-	EVENTOUT, SPI3_MISO/I2S3ext_SD, USART3_RX	-			
-	-	-	53	PC12	I/O	FT	-	EVENTOUT, SPI3_MOSI/I2S3_SD, USART3_CK	-			
-	-	-	54	PD2	I/O	FT	-	EVENTOUT	-			
26	A3	39	55	PB3	I/O	FT	-	JTDO-TRACESWO, TIM2_CH2, TSC_G5_IO1, SPI3_SCK/I2S3_CK, USART2_TX, EVENTOUT	-			
27	A4	40	56	PB4	I/O	FT	-	JTRST, TIM16_CH1, TSC_G5_IO2, SPI3_MISO/I2S3ext_SD, USART2_RX, TIM17_BKIN, EVENTOUT	-			
28	B4	41	57	PB5	I/O	FT	-	TIM16_BKIN, I2C1_SMBAI, SPI3_MOSI/I2S3_SD, USART2_CK, I2C3_SDA, TIM17_CH1, EVENTOUT	-			
29	C4	42	58	PB6	I/O	FTf	-	TIM16_CH1N, TSC_G5_IO3, I2C1_SCL, USART1_TX, EVENTOUT	-			
30	D4	43	59	PB7	I/O	FTf	-	TIM17_CH1N, TSC_G5_IO4, I2C1_SDA, USART1_RX, EVENTOUT	-			

STM32F301x6 STM32F301x8

Pinouts and pin description

				All	periphe	erals en	abled	All peripherals disabled				
Symbol	Parameter	Conditions	f _{HCLK}	-	М	ax @ T,	4 ⁽¹⁾	-	м	ах @ Т _/	A ⁽¹⁾	Unit
				тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
			72 MHz	45.8	49.1 ⁽²⁾	50.1	51.4 ⁽²⁾	25.1	27.3 ⁽²⁾	28.0	28.6 ⁽²⁾	
I _{DD}			64 MHz	40.8	43.6	44.9	46.9	22.3	24.1	25.0	25.5	
		External	48 MHz	30.2	32.9	33.5	34.8	17.0	18.7	19.1	19.6	
		clock (HSE	32 MHz	20.5	23.1	24.1	25.4	11.1	12.2	13.2	13.3	
	Supply	bypass)	24 MHz	15.4	17.1	18.3	19.5	8.5	9.7	10.1	10.2	
	current in		8 MHz	5.0	5.9	6.3	6.9	3.1	3.7	4.1	4.7	
	executing		1 MHz	0.8	1.1	1.9	2.6	0.5	0.8	1.2	1.4	
	from RAM		64 MHz	37.3	41.1	41.8	43.3	22.0	23.8	24.4	24.9	mA
		Internal clock (HSI)	48 MHz	28.0	31.1	31.6	33.2	16.4	18.0	18.3	18.6	
			32 MHz	18.8	21.3	22.1	23.1	10.9	11.9	12.8	13.1	
			24 MHz	14.2	15.9	16.8	17.9	5.5	6.4	6.7	7.3	
			8 MHz	4.8	5.1	6.0	6.5	2.9	3.5	4.1	4.2	
			72 MHz	30.0	32.8 ⁽²⁾	33.1	34.1 ⁽²⁾	5.9	6.8 ⁽²⁾	6.9	7.4 ⁽²⁾	
			64 MHz	26.7	29.2	29.6	30.5	5.3	5.9	6.2	6.7	
		External	48 MHz	16.7	18.5	19.0	19.7	3.6	4.5	4.5	5.3	
	Quarte	clock (HSE	32 MHz	13.3	14.9	15.3	15.4	2.9	3.7	3.8	4.3	
	current in	bypass)	24 MHz	10.2	11.4	12.0	12.3	2.2	2.7	2.9	3.2	
	Sleep		8 MHz	3.6	4.4	4.8	5.3	0.9	1.2	1.5	2.1	
IDD	executing		1 MHz	0.5	0.8	1.1	1.3	0.1	0.4	0.8	0.8	
	from Flash		64 MHz	23.2	25.3	25.6	26.2	5.0	5.7	6.1	6.2	
			48 MHz	17.5	19.2	19.4	19.9	3.9	4.7	4.8	5.3	
		Internal clock (HSI)	32 MHz	11.7	12.9	13.2	13.3	2.6	3.4	3.6	4.2	mA
			24 MHz	8.9	10.2	10.6	10.8	1.4	2.1	2.4	2.7	
			8 MHz	3.4	4.0	4.6	5.1	0.7	1.1	1.4	1.9	

Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)

1. Guaranteed by characterization results.

2. Data based on characterization results and tested in production with code executing from RAM.

Symbol					Тур @)V _{DD} (V _{DD} =		Max ⁽¹⁾					
	Parameter	Conditions		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
	Supply current in Stop mode	visor ON	Regulator in run/low- power mode, all oscillators OFF	1.70	1.83	1.95	2.08	2.22	2.37	3.40	5.30	5.5		
I _{DDA}	Supply	pply rrent in andby ode	ply ent in idby le	LSI ON and IWDG ON	2.08	2.25	2.41	2.59	2.79	3.01	-	-	-	
	current in Standby mode			LSI OFF and IWDG OFF	1.59	1.72	1.83	1.96	2.10	2.25	2.80	2.90	3.60	
	Supply current in Stop mode	risor OFF	Regulator in run/low- power mode, all oscillators OFF	0.99	1.01	1.04	1.09	1.14	1.21	-	-	-	μΑ	
	Supply	nerv	LSI ON and IWDG ON	1.36	1.43	1.50	1.60	1.72	1.85	-	-	-		
	current in Standby mode	current in Standby mode	V _{DDA} su	LSI OFF and IWDG OFF	0.87	0.89	0.92	0.97	1.02	1.09	-	-	-	

1. Guaranteed by characterization results.

Symbol	Para meter	Conditions		Max. Typ.@V _{BAT} @V _{BAT} = 3.6V ⁽²⁾ T _A (°C)					.6V ⁽²⁾	Unit				
			1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	25	85	105	
	Backup domain	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.41	0.43	0.46	0.54	0.59	0.66	0.74	0.82	-	-	-	
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.65	0.68	0.73	0.80	0.87	0.95	1.03	1.14	-	-	-	

Table 33. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 37: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{DD}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115

Table 40. High-speed external user clock characteristics
--

1. Guaranteed by design.

6.3.8 Internal clock source characteristics

The parameters given in *Table 44* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
		T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	
ACC _{HSI}	Accuracy of the HSI oscillator	T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	%
		$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	
		T _A = 0 to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_{A} = 25^{\circ}C^{(4)}$	-1	-	1	
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA

Table 44.	HSI	oscillator	characteristics ⁽¹⁾	
-----------	-----	------------	--------------------------------	--

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Figure 18. HSI oscillator accuracy characterization results for soldered parts

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 49. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Cymbol		Conditione	frequency band	8/72 MHz	•
		V - 2 2 V T - 25 °C	0.1 to 30 MHz	5	
6	S _{EMI} Peak level	ak level $V_{DD} = 3.3 \text{ v}, \text{T}_{A} = 23 \text{ C},$ LQFP64 package compliant with IEC	30 to 130 MHz	6	dBµV
SEMI			130 MHz to 1GHz	28	
	61967-2		SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = +25 \degree C$, conforming	LQFP64, WLCSP49	C3	250	v
	(charge device model)	10 ANOI/200 01100.0.1	All other	C4	500	

 Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Figure 30 illustrates the ADC current consumption as per the clock frequency in singleended and differential modes.

Figure 30. ADC typical current consumption in single-ended and differential modes

Table 65. Maximum ADC R_{AIN} (1)

	Sampling	Sampling		R _{AIN} max (kΩ)		
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾	
	1.5	20.83	0.018	NA	NA	
	2.5	34.72	0.150	NA	0.022	
	4.5	62.50	0.470	0.220	0.180	
12 hits	7.5	104.17	0.820	0.560	0.470	
12 01(5	19.5	270.83	2.70	1.80	1.50	
	61.5	854.17	8.20	6.80	4.70	
	181.5	2520.83	22.0	18.0	15.0	
	601.5	8354.17	82.0	68.0	47.0	

Symbol	Parameter	c	Conditions		Min (3)	Тур	Max (3)	Unit
			Single ended	Fast channel 5.1 Ms	66	67	-	
SND(4)	Signal-to-			Slow channel 4.8 Ms	66	67	-	
SINKY	noise ratio AE	ADC clock freq. \leq 72 MHz Sampling freq \leq 5 Msps	Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dD
		V _{DDA} = 3.3 V	Single ended	Fast channel 5.1 Ms	-	-80	-80	uВ
тuр(4)	Total	Total 25°C	Single ended	Slow channel 4.8 Ms	-	-78	-77	
distortion		Differential	Fast channel 5.1 Ms	-	-83	-82		
			Dillerential	Slow channel 4.8 Ms	-	-81	-80	

Table 66. ADC accuracy - limited test conditions⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

4. Value measured with a –0.5dB Full Scale 50kHz sine wave input signal.

STM32F301x6 STM32F301x8

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	C _{LOAD} ∕50 pF, R _{LOAD} ≥ 5 kΩ	-	-	1	MS/s
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	C _{LOAD} ∕50 pF, R _{LOAD} ≥ 5 kΩ	-	6.5	10	μs
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	$C_{LOAD} = 50 \text{ pF},$ No $R_{LOAD} \ge 5 \text{ k}\Omega,$	-	-67	-40	dB

Table 69. DAC characteristics (continued)

1. Guaranteed by design.

2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.

3. Guaranteed by characterization results.

Figure 33. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.20 Comparator characteristics

Table 70. Compa	rator characteristics ⁽¹⁾⁽²⁾
-----------------	---

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage	-	2	-	3.6	V
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	V
V _{BG}	Scaler input voltage	-	-	V _{REFINIT}	-	
V _{SC}	Scaler offset voltage	-	-	±5	±10	mV

6.3.21 Operational amplifier characteristics

Symbol	Paran	neter	Condition	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V	
CMIR	Common mode in	Common mode input range		0	-	V _{DDA}	V	
	Input offset voltage	Maximum calibration range	25°C, No Load on output.	-	-	4	- mV	
M			All voltage/Temp.	-	-	6		
VIOFFSET		After offset calibration	25°C, No Load on output.	-	-	1.6		
			All voltage/Temp.	-	-	3		
ΔVI_{OFFSET}	Input offset voltag	e drift	-	-	5	-	- μV/°C	
I _{LOAD}	Drive current		-	-	-	500	μA	
IDDOPAMP	Consumption		No load, quiescent mode	-	690	1450	μA	
CMRR	Common mode re	ejection ratio	-	-	90	-	dB	
PSRR	Power supply rejection ratio		DC	73	117	-	dB	
GBW	Bandwidth		-	-	8.2	-	MHz	
SR	Slew rate		-	-	4.7	-	V/µs	
R _{LOAD}	Resistive load		-	4	-	-	kΩ	
C _{LOAD}	Capacitive load		-	-	-	50	pF	
VOH	High saturation voltage ⁽²⁾		R _{load} = min, Input at V _{DDA} .	V _{DDA} -100	-	-	mV	
VORSAT			R _{load} = 20K, Input at V _{DDA} .	V _{DDA} -20	-	-		
	Low saturation voltage ⁽²⁾		Rload = min, input at 0V	-	-	100		
VOLSAI			Rload = 20K, input at 0V.	-	-	20		
φm	Phase margin		-	-	62	-	0	
tofftrim	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	-	2	ms	
twakeup	Wake up time from OFF state.		$\begin{array}{l} C_{LOAD} \leq \!\! 50 \text{ pf}, \\ R_{LOAD} \geq 4 \text{ k}\Omega, \\ \text{Follower} \\ \text{configuration} \end{array}$	-	2.8	5	μs	
ts_OPAM_VOUT	ADC sampling tim	ne when reading	the OPAMP output	400	-	-	ns	

Table 71. Operational amplifier characteristics⁽¹⁾

Figure 35. OPAMP Voltage Noise versus Frequency

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

1. Dimensions are expressed in millimeters.

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 23: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
Θ _{JA}	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	20.04/	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55		
	Thermal resistance junction-ambient WCSP49 - 3.4 x 3.4 mm	49	C/W	
	Thermal resistance junction-ambient UFQFN32 - 5 x 5 mm	37		

Table 80. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

