

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f301r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Peripheral	STM32	F301Kx	STM32	F301Cx	STM32F301Rx				
Flash (Kbytes)		32	64	32	64	32	64			
SRAM (Kbytes)			•	1	6	L				
	Advanced control	1 (16-bit)								
	General purpose		3 (16-bit) 1 (32 bit)							
	Basic				1					
Timers	SysTick timer				1					
	Watchdog timers (independent, window)			2	2					
	PWM channels (all) (1)	1	6		1	8				
	PWM channels (except complementary)	1	10 12				2			
	SPI/I2S			2	2					
Comm. interfaces	l ² C			:	3					
	USART	2 3								
DMA channels	·	7								
Capacitive sensing	channels			1	8					
12-bit ADC Number of channe	ls		1 8		1 1		1 5			
12-bit DAC channe	els				1					
Analog comparator	·	:	2		:	3				
Operational amplifi	er				1					
CPU frequency				72 1	MHz					
Operating voltage			2.0 to 3.6 V							
Operating tempera	ture		- 4	ent operati 0 to 85°C / n temperat	- 40 to 108	5°C				
Packages		UFQF	PN32		P48, SP49	LQFP64				

Table 2. STM32F301x6/8 device features and peripheral counts

1. This total number considers also the PWMs generated on the complementary output channels.

3.18 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F301x6/8 devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3).

The USART interfaces are able to communicate at speeds of up to 9 Mbit/s.

All USARTs support hardware management of the CTS and RTS signals, multiprocessor communication mode, single-wire half-duplex communication mode and synchronous mode.

USART1 supports SmartCard mode, IrDA SIR ENDEC, LIN Master capability and autobaudrate detection.

All USART interfaces can be served by the DMA controller.

Refer to *Table 8* for the features available in all USARTs interfaces.

USART modes/features ⁽¹⁾	USART1	USART2	USART3
Hardware flow control for modem	Х	Х	Х
Continuous communication using DMA	Х	Х	Х
Multiprocessor communication	Х	Х	Х
Synchronous mode	Х	Х	Х
SmartCard mode	Х	-	-
Single-wire half-duplex communication	Х	Х	Х
IrDA SIR ENDEC block	Х	-	-
LIN mode	Х	-	-
Dual clock domain and wakeup from Stop mode	Х	-	-
Receiver timeout interrupt	Х	-	-
Modbus communication	Х	-	-
Auto baud rate detection	Х	-	-
Driver Enable	Х	Х	Х

Table 8. USART features

1. X = supported.

3.19 Serial peripheral interfaces (SPI)/Inter-integrated sound interfaces (I2S)

Two SPI interfaces (SPI2 and SPI3) allow communication up to 18 Mbit/s in slave and master modes in full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master

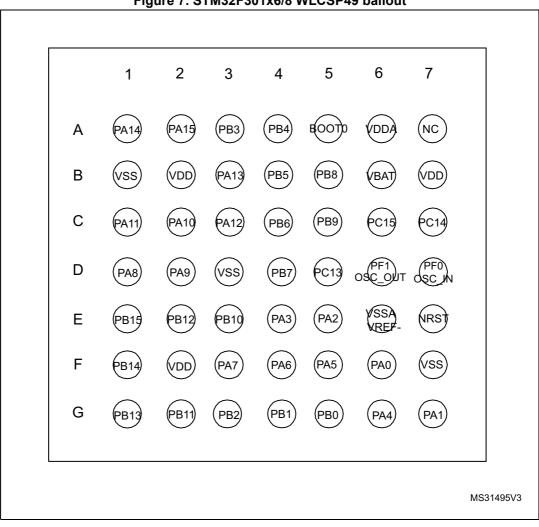


Figure 7. STM32F301x6/8 WLCSP49 ballout

1. The above figure shows the package top view.

2. NC: Not connected.

36/135

3	

	Pin Nu	umber											
UQFN32	WLCSP49	LQFP48	LQFP64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions				
-	B6	1	1	VBAT	S	-	-	Backup po	ower supply				
-	D5	2	2	PC13 ⁽¹⁾ TAMPER1 WKUP2 (PC13)	I/O	TC	(1)	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT				
-	C7	3	3	PC14 ⁽¹⁾ OSC32_IN (PC14)	I/O	TC	(1)	-	OSC32_IN				
-	C6	4	4	PC15 ⁽¹⁾ OSC32_OUT (PC14)	I/O	TC	(1)	-	OSC32_OUT				
2	D7	5	5	PF0 OSC_IN (PF0)	I/O	FTf	-	I2C2_SDA, SPI2_NSS/I2S2_WS, TIM1_CH3N	OSC_IN				
3	D6	6	6	PF1 OSC_OUT (PF1)	0	FTf	-	I2C2_SCL, SPI2_SCK/I2S2_CK	OSC_OUT				
4	E7	7	7	NRST	I/O	RST	-	Device reset input/interna	al reset output (active low)				
-	-	-	8	PC0	I/O	TTa	-	EVENTOUT, TIM1_CH1	ADC1_IN6				
-	-	-	9	PC1	I/O	TTa	-	EVENTOUT, TIM1_CH2	ADC1_IN7				
-	-	-	10	PC2	I/O	TTa	-	EVENTOUT, TIM1_CH3	ADC1_IN8				
-	-	-	11	PC3	I/O	ТТа	-	EVENTOUT, TIM1_CH4, TIM1_BKIN2	ADC1_IN9				
6	E6	8	12	VSSA/VREF-	S	-	-	Analog ground/Nega	tive reference voltage				
5	A6	9	13	VDDA/VREF+	S	-	-	Analog power supply/Positive reference voltage					

DocID025146 Rev 6

41/135

				Tal	ble 13. S	STM32F301	1x6/8 pi	n definitions (continued)	
	Pin N	umber							
UQFN32	WLCSP49	LQFP48	LQFP64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	51	PC10	I/O	FT	-	EVENTOUT, SPI3_SCK/I2S3_CK, USART3_TX	-
-	-	-	52	PC11	I/O	FT	EVENTOUT, FT - SPI3_MISO/I2S3ext_SD, USART3_RX FT - EVENTOUT, SPI3_MOSI/I2S3_SD, USART3_CK		-
-	-	-	53	PC12	I/O FT - EVENTOUT, SPI3_MOSI/I2S3_SD, USART3_CK		-		
-	-	-	54	PD2	I/O	FT	-	EVENTOUT	-
26	A3	39	55	PB3	I/O	FT	-	JTDO-TRACESWO, TIM2_CH2, TSC_G5_IO1, SPI3_SCK/I2S3_CK, USART2_TX, EVENTOUT	-
27	A4	40	56	PB4	I/O	FT	-	JTRST, TIM16_CH1, TSC_G5_IO2, SPI3_MISO/I2S3ext_SD, USART2_RX, TIM17_BKIN, EVENTOUT	-
28	B4	41	57	PB5	I/O	FT	-	TIM16_BKIN, I2C1_SMBAI, SPI3_MOSI/I2S3_SD, USART2_CK, I2C3_SDA, TIM17_CH1, EVENTOUT	-
29	C4	42	58	PB6	I/O	FTf	-	TIM16_CH1N, TSC_G5_IO3, I2C1_SCL, USART1_TX, EVENTOUT	-
30	D4	43	59	PB7	I/O	FTf	-	TIM17_CH1N, TSC_G5_IO4, I2C1_SDA, USART1_RX, EVENTOUT	-

STM32F301x6 STM32F301x8

Pinouts and pin description

	Pin Nı	umber										
UQFN32	WLCSP49	LQFP48	LQFP64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
31	A5	44	60	BOOT0	I	В	-	Boot memor	y selection			
-	B5	45	61	PB8	I/O	FTf	-	TIM16_CH1, TSC_SYNC, I2C1_SCL, USART3_RX, TIM1_BKIN, EVENTOUT	-			
-	C5	46	62	PB9	I/O	FTf	-	TIM17_CH1, I2C1_SDA, IR-OUT, USART3_TX, COMP2_OUT, EVENTOUT	-			
32	D3	47	63	VSS_1	S	-	-	Digital ground				
"1"	B7	48	64	VDD_1	S	-	-	Digital power supply				

1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0366 reference manual.

2. Fast ADC channel.

3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.

42/135

DocID025146 Rev 6

					Т	able 14.	Alternate f	unctions	for Por	rt A						
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port & pin name	SYS_AF	TIM2/TIM15/TIM16 /TIM17/EVENT	I2C3/TIM1/TIM2/TIM15	I2C3/TIM15/TSC	I2C1/I2C2/TIM1/ TIM16/TIM17	SPI2/I2S2/ SPI3/I2S3/Infrared	SPI2/I2S2/SPI3/ I2S3/TIM1/Infrared	USART1/USART2/USART3/ GPCOMP6	12C3/GPCOMP2 /GPCOMP4/GPCOMP6	TIM1/TIM15	TIM2/TIM17	TIM1	TIM1			EVENT
PA0	-	TIM2 _CH1/ TIM2 _ETR	-	TSC _G1_IO1	-	-	-	USART2 _CTS	-	-	-	-	-	-	-	EVENT OUT
PA1	RTC _REFIN	TIM2 _CH2	-	TSC _G1_IO2	-	-	-	USART2 _RTS_D E	-	TIM15 _CH1N	-	-	-	-	-	EVENT OUT
PA2	-	TIM2 _CH3	-	TSC _G1_IO3	-	-	-	USART2 _TX	COMP2 _OUT	TIM15 _CH1	-	-	-	-	-	EVENT OUT
PA3	-	TIM2 _CH4	-	TSC _G1_IO4	-	-	-	USART2 _RX	-	TIM15 _CH2	-	-	-	-	-	EVENT OUT
PA4	-	-	-	TSC _G2_IO1	-	-	SPI3_NSS/ I2S3_WS	USART2 _CK	-	-	-	-	-	-	-	EVENT OUT
PA5	-	TIM2 _CH1/ TIM2 _ETR	-	TSC _G2_IO2	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PA6	-	TIM16 _CH1	-	TSC _G2_IO3	-	-	TIM1_BKIN	-	-	-	-	-	-	-	-	EVENT OUT
PA7	-	TIM17 _CH1	-	TSC _G2_IO4	-	-	TIM1 _CH1N	-	-	-	-	-	-	-	-	EVENT OUT
PA8	мсо	-	-	I2C3 _SCL	I2C2 _SMBAL	I2S2 _MCK	TIM1_CH1	USART1 _CK	-	-	-	-	-	-	-	EVENT OUT

STM32F301x6 STM32F301x8

Pinouts and pin description

43/135

44/135

DocID025146 Rev 6

					Table 1	4. Altern	ate functio	ons for P	ort A (co	ontinue	d)					
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port & pin name	SYS_AF	TIM2/TIM15/TIM16 /TIM17/EVENT	I2C3/TIM1/TIM2/TIM15	I2C3/TIM15/TSC	I2C1/I2C2/TIM1/ TIM16/TIM17	SPI2/I2S2/ SPI3/I2S3/Infrared	SPI2/I2S2/SPI3/ I2S3/TIM1/Infrared	USART1/USART2/USART3/ GPCOMP6	I2C3/GPCOMP2 /GPCOMP4/GPCOMP6	TIM1/TIM15	TIM2/TIM17	TIM1	TIM1			EVENT
PA9	-	-	I2C3 _SMBAL	TSC _G4_IO1	I2C2 _SCL	I2S3 _MCK	TIM1_CH2	USART1 _TX	-	TIM15 _BKIN	TIM2 _CH3	-	-	-	-	EVENT OUT
PA10	-	TIM17 _BKIN		TSC _G4_IO2	I2C2 _SDA	SPI2_MIS O/I2S2ext _SD	TIM1_CH3	USART1 _RX	COMP6 _OUT	-	TIM2 _CH4	-	-	-	-	EVENT OUT
PA11	-	-	-	-	-	SPI2_MO SI/I2S2 _SD	TIM1 _CH1N	USART1 _CTS	-	-	-	TIM1 _CH4	TIM1 _BKIN2	-	-	EVENT OUT
PA12	-	TIM16 _CH1	-	-	-	I2SCKIN	TIM1 _CH2N	USART1 _RTS_D E	COMP2 _OUT	-	-	TIM1 _ETR	-	-	-	EVENT OUT
PA13	SWDAT- JTMS	TIM16 _CH1N	-	TSC _G4_IO3	-	IR-OUT	-	USART3 _CTS	-	-	-	-	-	-	-	EVENT OUT
PA14	SWCLK- JTCK		-	TSC _G4_IO4	I2C1 _SDA	-	TIM1_BKIN	USART2 _TX	-	-	-	-	-	-	-	EVENT OUT
PA15	JTDI	TIM2_C H1/ TIM2_E TR	-	TSC _SYNC	I2C1 _SCL	-	SPI3_NSS/ I2S3_WS	USART2 _RX	-	TIM1 _BKIN	-	-	-	-	-	EVENT OUT

Pinouts and pin description

5

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

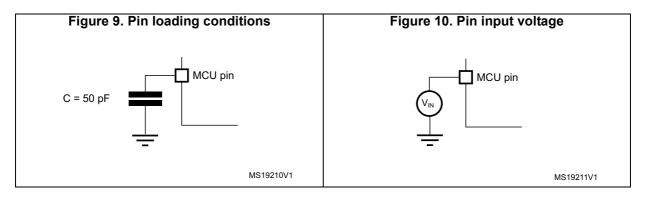
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3ơ).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±20).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 37: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
I	LSE current consumption	LSEDRV[1:0]=10 medium low driving capability	-	-	1	
I _{DD}		LSEDRV[1:0]=01 medium high driving capability	-	-	1.3	μA
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6	
		LSEDRV[1:0]=00 lower driving capability	5	-	-	
a	Oscillator transconductance	LSEDRV[1:0]=10 medium low driving capability	8	-	-	
9 _m		LSEDRV[1:0]=01 medium high driving capability	15	-	-	µA/V
		LSEDRV[1:0]=11 higher driving capability	25	-	-	
$t_{SU(LSE)}^{(3)}$	Startup time	V _{DD} is stabilized	-	2	-	S

Table 43. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design.

3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class	
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	2 level A	

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 53

		Functional s			
Symbol	Description	Negative Positive injection injection		Unit	
	Injected current on BOOT0	-0	NA		
	Injected current on PC0 pin (TTa pin)	-0	+5		
I _{INJ}	Injected current PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA6, PA7, PC4, PB0, PB10, PB11, PB13 with induced leakage current on other pins from this group less than -100 μ A or more than +100 μ A	-5	+5	mA	
	Injected current on any other TT, FT and FTf pins	-5	NA		
	Injected current on all other TC, TTa and RESET pins	-5	+5		

Table 53. I/O current injection susceptibility

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

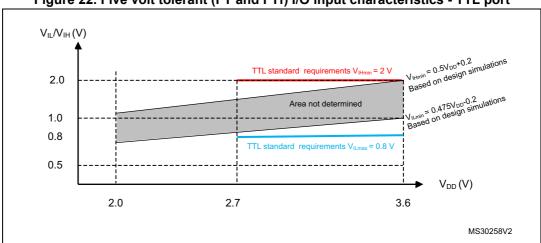


Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

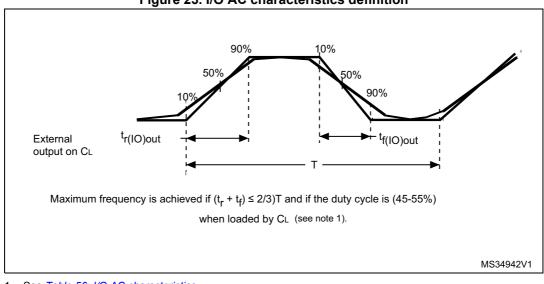


Figure 23. I/O AC characteristics definition

1. See Table 56: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 54*).

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 23*.

Symbol	Parameter	Conditions Min		Тур	Max	Unit	
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-	-	0.3V _{DD} + 0.07 ⁽¹⁾	v	
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	0.445V _{DD} + 0.398 ⁽¹⁾	-	-		
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ	
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100 ⁽¹⁾	ns	
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	500 ⁽¹⁾	-	-	ns	

Table 57. NRST pin characteristics

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

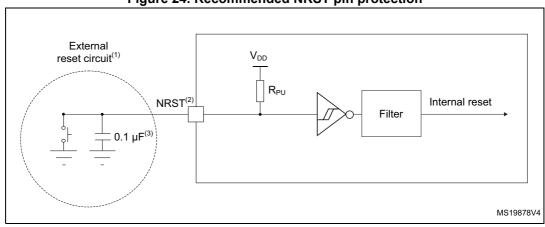


Figure 24. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 57. Otherwise the reset will not be taken into account by the device.
- 3. The user must place the external capacitor on NRST as close as possible to the chip.

6.3.16 Timer characteristics

The parameters given in *Table 58* are guaranteed by design.

Refer to *Section 6.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.9	-	ns
		f _{TIMxCLK} = 144 MHz, x = 1, 15,16, 17	6.95	-	ns
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
I COTIM		TIM2	-	32	DIL
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
t _{COUNTER}		f _{TIMxCLK} = 72 MHz	0.0139	910	μs
		f _{TIMxCLK} = 144 MHz, x= 1/15/16/17	0.0069	455	μs
		-	-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count	f _{TIMxCLK} = 72 MHz	-	59.65	S
	with 32-bit counter	f _{TIMxCLK} = 144 MHz, x= 1/15/16/17	-	29.825	S

Table 58. TIMx⁽¹⁾⁽²⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design.

Figure 30 illustrates the ADC current consumption as per the clock frequency in singleended and differential modes.

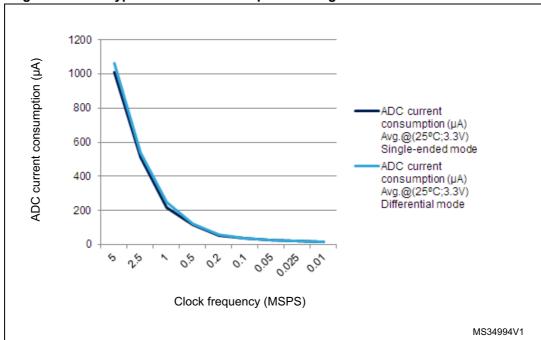
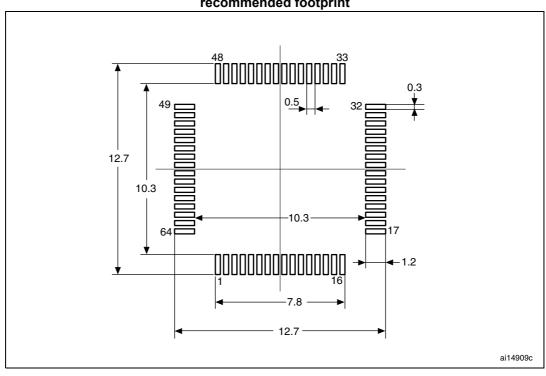


Figure 30. ADC typical current consumption in single-ended and differential modes

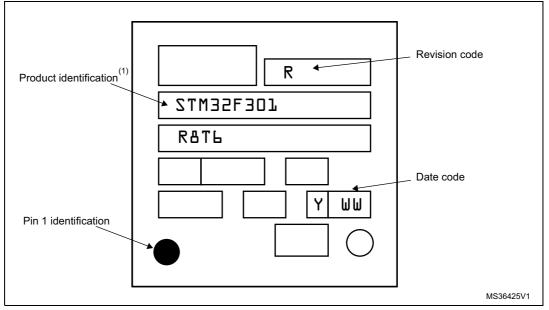
Table 65. Maximum ADC R_{AIN} (1)

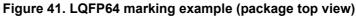

	Sampling Sampling		R _{AIN} max (kΩ)					
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾			
	1.5	20.83	0.018	NA	NA			
	2.5	34.72	0.150	NA	0.022			
	4.5	62.50	0.470	0.220	0.180			
12 bits	7.5	104.17	0.820	0.560	0.470			
12 DIIS	19.5	270.83	2.70	1.80	1.50			
	61.5	854.17	8.20	6.80	4.70			
	181.5	2520.83	22.0	18.0	15.0			
	601.5	8354.17	82.0	68.0	47.0			

Symbol		millimeters		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Max		
E3	-	7.500	-	-	0.2953	-		
е	- 0.500		-	-	0.0197	-		
K	0°	3.5°	7°	0°	3.5°	7°		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
CCC	-	-	0.080	-	-	0.0031		

Table 77. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 40. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint


1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 23: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
Θ_{JA}	Thermal resistance junction-ambient WCSP49 - 3.4 x 3.4 mm	49	
	Thermal resistance junction-ambient UFQFN32 - 5 x 5 mm	37	

Table 80. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Ordering information

Table 81. Orde	ring infor	matio	on sche	eme				
Example:	STM32	F	301	К	8	Т	6	ххх
Device family								
STM32 = ARM [®] -based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
301 = STM32F301xx, 2.0 to 3.6 V operating voltage	9							
Pin count								
K = 32 pins								
C = 48 or 49 pins								
R = 64 pins								
Flash memory size								
6 = 32 Kbytes of Flash memory								
8 = 64 Kbytes of Flash memory								
Package								
T = LQFP								
Y= WLCSP								
U= UFQFPN								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C								
7 = Industrial temperature range, –40 to 105 $^\circ\text{C}$								
Options								
xxx = programmed parts								

TR = tape and reel

