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ATmega16(L)
• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag 

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
10
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ATmega16(L)
When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Interrupt Response 
Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set global interrupt enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending 

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
15
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SRAM Data 
Memory

Figure 9 shows how the ATmega16 SRAM Memory is organized.

The lower 1120 Data Memory locations address the Register File, the I/O Memory, and the inter-
nal data SRAM. The first 96 locations address the Register File and I/O Memory, and the next
1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y-register or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, and the 1024 bytes of internal data
SRAM in the ATmega16 are all accessible through all these addressing modes. The Register
File is described in “General Purpose Register File” on page 11.

Figure 9.  Data Memory Map

Register File

R0
R1
R2

R29
R30
R31

I/O Registers
$00
$01
$02

...

$3D
$3E
$3F

...

$0000
$0001
$0002

$001D
$001E
$001F

$0020
$0021
$0022

...

$005D
$005E
$005F

...

Data Address Space

$0060
$0061

$045E
$045F

...

Internal SRAM
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External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
14. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.
By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND.

Figure 14.  External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 12.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in reset during such changes in the clock frequency.

Timer/Counter 
Oscillator

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is
connected directly between the pins. No external capacitors are needed. The Oscillator is opti-
mized for use with a 32.768 kHz watch crystal. Applying an external clock source to TOSC1 is
not recommended.
Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator

and the internal capacitors have the same nominal value of 36 pF.

Table 12.  Start-up Times for the External Clock Selection

SUT1..0

Start-up Time from 
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10 6 CK 65 ms Slowly rising power

11 Reserved

EXTERNAL
CLOCK
SIGNAL
31
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Minimizing Power 
Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

Analog to Digital 
Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter” on page 204
for details on ADC operation.

Analog Comparator When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to “Analog Comparator” on page 201 for details on how to
configure the Analog Comparator.

Brown-out Detector If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and
hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Brown-out Detection” on page 40 for details on how to
configure the Brown-out Detector.

Internal Voltage 
Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 42 for details on the start-up time.

Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 42 for details on how to configure the Watchdog Timer.

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
the both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the
device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will
then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 54 for
details on which pins are enabled. If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to VCC/2, the input buffer will use excessive power. 
35
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Timer/Counter 
Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 34 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 34.  Timer/Counter Timing Diagram, no Prescaling

Figure 35 shows the same timing data, but with the prescaler enabled.

Figure 35.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 36 shows the setting of OCF0 in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
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The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1( void )

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

93
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SS Pin 
Functionality

Slave Mode When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs except MISO which can be user
configured as an output, and the SPI is passive, which means that it will not receive incoming
data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the Slave Bit Counter synchronous
with the Master Clock generator. When the SS pin is driven high, the SPI Slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

Master Mode When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another Master selecting the SPI as a
Slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of 
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is 
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a Slave Select, it must be set by the user to re-enable SPI Master
mode.

SPI Control Register – 
SPCR

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the global interrupt enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
140
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Asynchronous 
Operational Range

The operational range of the receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the receiver does not have a similar (see
Table 61) base frequency, the receiver will not be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for 
Double Speed mode.

SF First sample number used for majority voting. SF = 8 for Normal Speed and 
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for Normal Speed and 
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 61 and Table 62 list the maximum receiver baud rate error that can be tolerated. Note that
Normal Speed mode has higher toleration of baud rate variations.

Table 61.  Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X =
0) 

D
# (Data+Parity Bit) Rslow (%) Rfast(%)

Max Total 
Error (%)

Recommended Max 
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ±3.0

6 94.12 105.79 +5.79/-5.88 ±2.5

7 94.81 105.11 +5.11/-5.19 ±2.0

8 95.36 104.58 +4.58/-4.54 ±2.0

9 95.81 104.14 +4.14/-4.19 ±1.5

10 96.17 103.78 +3.78/-3.83 ±1.5

Table 62.  Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X =
1)

D
# (Data+Parity Bit) Rslow (%) Rfast (%)

Max Total 
Error (%)

Recommended Max 
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ±2.5

6 94.92 104.92 +4.92/-5.08 ±2.0

7 95.52 104.35 +4.35/-4.48 ±1.5

Rslow
D 1+( )S

S 1– D S⋅ SF+ +
-------------------------------------------=

Rfast
D 2+( )S

D 1+( )S SM+
-----------------------------------=
159
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Multi-processor 
Communication 
Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCM
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the receiver is set up for frames with
nine data bits, then the ninth bit (RXB8) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data from a
Master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular Slave MCU has been addressed, it will receive the following data
frames as normal, while the other Slave MCUs will ignore the received frames until another
address frame is received.

Using MPCM For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ = 7). The
ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The Slave MCUs must in this case be set to use a 9-bit character
frame format. 

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).

2. The Master MCU sends an address frame, and all Slaves receive and read this frame. In 
the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it 
clears the MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps 
the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is received. 
The other Slave MCUs, which still have the MPCM bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets 
the MPCM bit and waits for a new address frame from Master. The process then repeats 
from 2.

Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the
receiver must change between using n and n+1 character frame formats. This makes full-duplex
operation difficult since the transmitter and receiver uses the same character size setting. If 5-bit
to 8-bit character frames are used, the transmitter must be set to use two stop bit (USBS = 1)
since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The
MPCM bit shares the same I/O location as the TXC Flag and this might accidentally be cleared
when using SBI or CBI instructions.
161
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Figure 83.  Arbitration between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit

• A STOP condition and a data bit

• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA   SDA
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desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware 
to transmit the SLA+W present in TWDR. Which value to write is described later on. 
However, it is important that the TWINT bit is set in the value written. Writing a one to 
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in 
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate 
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the address packet has successfully 
been sent. The status code will also reflect whether a Slave acknowledged the packet or 
not.

5. The application software should now examine the value of TWSR, to make sure that the 
address packet was successfully transmitted, and that the value of the ACK bit was as 
expected. If TWSR indicates otherwise, the application software might take some special 
action, like calling an error routine. Assuming that the status code is as expected, the 
application must load a data packet into TWDR. Subsequently, a specific value must be 
written to TWCR, instructing the TWI hardware to transmit the data packet present in 
TWDR. Which value to write is described later on. However, it is important that the 
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will 
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the 
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR 
is updated with a status code indicating that the data packet has successfully been sent. 
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the 
data packet was successfully transmitted, and that the value of the ACK bit was as 
expected. If TWSR indicates otherwise, the application software might take some special 
action, like calling an error routine. Assuming that the status code is as expected, the 
application must write a specific value to TWCR, instructing the TWI hardware to transmit 
a STOP condition. Which value to write is described later on. However, it is important that 
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI 
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after 
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag 
is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant 
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be 
transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been 
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a 
one to TWINT clears the flag. The TWI will then commence executing whatever operation 
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
184
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The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However, 
the output latches are not connected to the pins.

AVR_RESET; $C The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG Reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic 'one' in the Reset Chain. The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; $F Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan 
Related Register in I/O 
Memory

MCU Control and 
Status Register – 
MCUCSR

The MCU Control and Status Register contains control bits for general MCU functions, and pro-
vides information on which reset source caused an MCU Reset.

• Bit 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
231
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ATmega16(L)
Idle Supply Current Figure 156.  Idle Supply Current vs. Frequency (0.1 MHz - 1.0 MHz)

Figure 157.  Idle Supply Current vs. Frequency (1 MHz - 20 MHz)
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ATmega16(L)
Pin Pullup Figure 174.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 175.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 2.7V)
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ATmega16(L)
Figure 176.  Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 177.  Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
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ATmega16(L)
Figure 180.  I/O Pin Sink Current vs. Output Voltage (VCC = 5V)

Figure 181.  I/O Pin Sink Current vs. Output Voltage (VCC = 2.7V)
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ATmega16(L)
Figure 194.  Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 195.  Calibrated 8 MHz RC Oscillator Frequency vs. VCC
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ATmega16(L)
Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k  + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2
BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1 / 2
BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
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