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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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ATmega16(L)
Resources A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
Note: 1.

Data Retention Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
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ATmega16(L)
General Purpose 
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4.  AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register Low Byte

R27 $1B X-register High Byte

R28 $1C Y-register Low Byte

R29 $1D Y-register High Byte

R30 $1E Z-register Low Byte

R31 $1F Z-register High Byte
11
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Oscillator Calibration 
Register – OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the Internal Oscillator. Writing $FF to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 1.0 MHz, 2.0 MHz, 4.0 MHz, or 8.0 MHz. Tuning to other values is not guaranteed,
as indicated in Table 11.

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 11.  Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequency in Percentage of 

Nominal Frequency (%)
Max Frequency in Percentage of 

Nominal Frequency (%)

$00 50 100

$7F 75 150

$FF 100 200
30
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ATmega16(L)
I/O Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 22. Refer to “Electrical Charac-
teristics” on page 291 for a complete list of parameters.

Figure 22.  I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used, that is,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description for I/O Ports” on page 66.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable – PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
50. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 55. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Ports as General 
Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a functional
description of one I/O-port pin, here generically called Pxn.

Cpin

Logic

Rpu

See Figure 23
"General Digital I/O" for

Details

Pxn
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ATmega16(L)
The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable 
and Sleep Modes

As shown in Figure 23, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, Standby mode, and Extended Standby mode to avoid
high power consumption if some input signals are left floating, or have an analog signal level
close to VCC/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt
Request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by vari-
ous other alternate functions as described in “Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the External Inter-
rupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
54
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Alternate Functions of 
Port B

The Port B pins with alternate functions are shown in Table 25.

The alternate pin configuration is as follows:

• SCK – Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
Slave, this pin is configured as an input regardless of the setting of DDB7. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB7. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB7 bit.

• MISO – Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
Master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB6. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB6 bit.

Table 24.  Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PA0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 25.  Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

PB3
AIN1 (Analog Comparator Negative Input)
OC0 (Timer/Counter0 Output Compare Match Output)

PB2
AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PB0
T0 (Timer/Counter0 External Counter Input)

XCK (USART External Clock Input/Output)
58
2466T–AVR–07/10
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In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0 pin. Set-
ting the COM01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM01:0 to 3 (See Table 40 on page 84). The actual OC0 value will
only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC0 Register at the compare match between
OCR0 and TCNT0, and clearing (or setting) the OC0 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM01:0 bits.)

fOCnPWM
fclk_I/O

N 256⋅
------------------=
78
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ATmega16(L)
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of Period 2 in Figure 33 OCn has a transition from high to low even though there
is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM.
There are two cases that give a transition without Compare Match:

• OCR0A changes its value from MAX, like in Figure 33. When the OCR0A value is MAX the 
OCn pin value is the same as the result of a down-counting Compare Match. To ensure 
symmetry around BOTTOM the OCn value at MAX must be correspond to the result of an 
up-counting Compare Match.

• The Timer starts counting from a value higher than the one in OCR0A, and for that reason 
misses the Compare Match and hence the OCn change that would have happened on the 
way up.

fOCnPCPWM
fclk_I/O

N 510⋅
------------------=
80
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Compare Match 
Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses
the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.
Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 44 shows a simplified
schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System Reset
occur, the OC1x Register is reset to “0”.

Figure 44.  Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 44, Table 45 and Table 46 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timer/Counter Register Description” on page 110.

The COM1x1:0 bits have no effect on the Input Capture unit.

Compare Output Mode 
and Waveform 
Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 44 on page 110. For fast PWM mode refer to Table 45 on page
111, and for phase correct and phase and frequency correct PWM refer to Table 46 on page
111.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O
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Figure 46.  Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A
or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1x1:0 to 3 (See Table 44 on page 110). The actual OC1x
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

TCNTn

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
103
2466T–AVR–07/10



ATmega16(L)
Data Packet Format All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 80.  Data Packet Format

Combining Address 
and Data Packets into 
a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 81 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 81.  Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
receiverR

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
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Figure 87.  Formats and States in the Master Transmitter Mode

Master Receiver Mode In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(see Figure 88). In order to enter a Master mode, a START condition must be transmitted. The
format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

S
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Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.
193
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Boundary-scan 
Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connection. 

Scanning the Digital 
Port Pins

Figure 116 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn – function, and a
bi-directional pin cell that combines the three signals Output Control – OCxn, Output Data –
ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and pin indexes are
not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 117 shows a sim-
ple digital Port Pin as described in the section “I/O Ports” on page 50. The Boundary-scan
details from Figure 116 replaces the dashed box in Figure 117.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 117 to make the
scan chain read the actual pin value. For Analog function, there is a direct connection from the
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

Figure 116.  Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

0

1
D Q D Q

G

0

1

Port Pin (PXn)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Pullup Enable (PUE)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF2 LD2

FF1 LD1

LD0FF0
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111 MUXEN_6

110 MUXEN_5

109 MUXEN_4

108 MUXEN_3

107 MUXEN_2

106 MUXEN_1

105 MUXEN_0

104 NEGSEL_2

103 NEGSEL_1

102 NEGSEL_0

101 PASSEN

100 PRECH

99 SCTEST

98 ST

97 VCCREN

96 PB0.Data Port B

95 PB0.Control

94 PB0.Pullup_Enable

93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable

90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable

87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable

84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

81 PB5.Data

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable

Table 94.  ATmega16 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
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ATmega16(L)
Performing Page 
Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer must
be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary 
Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR. The con-
tent of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a page write operation or by writing the RWWSRE bit in
SPMCR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer.
Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

Performing a Page 
Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written zero
during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM 
Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCR is cleared. This means that the interrupt can be used instead of polling
the SPMCR Register in software. When using the SPM interrupt, the Interrupt Vectors should be
moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 45.

Consideration while 
Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

Prevent Reading the 
RWW Section during 
Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the Self-Programming operation. The RWWSB in the SPMCR will be set as long as the RWW
section is busy. During self-programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 45, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 256 for an example.
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Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the Fuse set-
tings for the clock options, the part will remain reset for a Reset Time-out Period (refer to “Clock
Sources” on page 25) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 115 on page 230.

Programming Enable 
Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 1010_0011_0111_0000. When the contents
of the register is equal to the programming enable signature, programming via the JTAG port is
enabled. The register is reset to 0 on Power-on Reset, and should always be reset when leaving
Programming mode.

Figure 140.  Programming Enable Register
TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
$A370
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ATmega16(L)
Figure 200.  Calibrated 2 MHz RC Oscillator Frequency vs. Temperature

Figure 201.  Calibrated 2 MHz RC Oscillator Frequency vs. VCC

1.8

1.85

1.9

1.95

2

2.05

2.1

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

M
H

z)
5.5V

2.7V

4.0V

1.7

1.8

1.9

2

2.1

2.2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z) 85°C
25°C

-40°C
325
2466T–AVR–07/10



ATmega16(L)
Errata The revision letter in this section refers to the revision of the ATmega16 device.

ATmega16(L) Rev. 
M

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronized to the asynchronous timer
clock is written when the asynchronous Timer/Counter register(TCNTx) is 0x00.

 Problem Fix / Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register(TCCRx), asynchronous
Timer Counter Register(TCNTx), or asynchronous Output Compare Register(OCRx).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev. 
L

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.
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