
Atmel - ATMEGA16-16MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VFQFN Exposed Pad

Supplier Device Package 44-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atmega16-16mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16-16mu-4396705
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega16(L)
The X-register, Y-
register and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-register, Y-register, and Z-register

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused
bits (15:13) should be masked out.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above $60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

15 XH XL 0

X - register 7 0 7 0

R27 ($1B) R26 ($1A)

15 YH YL 0

Y - register 7 0 7 0

R29 ($1D) R28 ($1C)

15 ZH ZL 0

Z - register 7 0 7 0

R31 ($1F) R30 ($1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
12
2466T–AVR–07/10

ATmega16(L)
The EEPROM Address
Register – EEARH and
EEARL

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

The EEPROM Data
Register – EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

The EEPROM Control
Register – EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
19
2466T–AVR–07/10

ATmega16(L)
Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise
Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the
Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface Address Match Interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an External level interrupt on INT0 or INT1, or an external inter-
rupt on INT2 can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an External level interrupt on INT0 or INT1, or an External interrupt on
INT2 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing oper-
ation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 68
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
reset time-out period, as described in “Clock Sources” on page 25.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, that is, the AS2 bit in ASSR is set, Timer/Counter2
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in
TIMSK, and the Global Interrupt Enable bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the Asynchronous Timer
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asynchronous
modules, including Timer/Counter2 if clocked asynchronously.
33
2466T–AVR–07/10

ATmega16(L)
Figure 23. General Digital I/O(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, SLEEP,
and PUD are common to all ports.

Configuring the Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for I/O Ports” on page 66, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when a reset condition becomes
active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be set to disable all
pull-ups in all ports.

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O
51
2466T–AVR–07/10

ATmega16(L)
Table 21 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 26 are not shown in the succeeding tables. The overriding signals are generated internally in
the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 21. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by
the PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is
controlled by the DDOV signal. If this signal is cleared,
the Output driver is enabled by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled,
the port value is controlled by the PVOV signal. If
PVOE is cleared, and the Output Driver is enabled, the
port Value is controlled by the PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV,
regardless of the setting of the PORTxn Register bit.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital
Input Enable is determined by MCU-state (Normal
Mode, sleep modes).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled
when DIEOV is set/cleared, regardless of the MCU
state (Normal Mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the
schmitt trigger but before the synchronizer. Unless the
Digital Input is used as a clock source, the module with
the alternate function will use its own synchronizer.

AIO Analog Input/ output This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad,
and can be used bi-directionally.
56
2466T–AVR–07/10

ATmega16(L)
• OC1A – Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDD5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

• OC1B – Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDD4 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

• INT1 – Port D, Bit 3

INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

• INT0 – Port D, Bit 2

INT0, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.

• TXD – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,
this pin is configured as an output regardless of the value of DDD1.

• RXD – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this
pin is configured as an input regardless of the value of DDD0. When the USART forces this pin
to be an input, the pull-up can still be controlled by the PORTD0 bit.

Table 32 and Table 33 relate the alternate functions of Port D to the overriding signals shown in
Figure 26 on page 55.

Table 32. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/OC2 PD6/ICP1 PD5/OC1A PD4/OC1B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE

PVOV OC2 0 OC1A OC1B

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – ICP1 INPUT – –

AIO – – – –
64
2466T–AVR–07/10

ATmega16(L)
8-bit
Timer/Counter
Register
Description

Timer/Counter Control
Register – TCCR0

• Bit 7 – FOC0: Force Output Compare

The FOC0 bit is only active when the WGM00 bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCR0 is written
when operating in PWM mode. When writing a logical one to the FOC0 bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OC0 output is changed according to
its COM01:0 bits setting. Note that the FOC0 bit is implemented as a strobe. Therefore it is the
value present in the COM01:0 bits that determines the effect of the forced compare.

A FOC0 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0 as TOP.

The FOC0 bit is always read as zero.

• Bit 3, 6 – WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of Waveform Generation to be used. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare Match (CTC)
mode, and two types of Pulse Width Modulation (PWM) modes. See Table 38 and “Modes of
Operation” on page 76.

Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode

These bits control the Output Compare pin (OC0) behavior. If one or both of the COM01:0 bits
are set, the OC0 output overrides the normal port functionality of the I/O pin it is connected to.
However, note that the Data Direction Register (DDR) bit corresponding to the OC0 pin must be
set in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 TCCR0

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 38. Waveform Generation Mode Bit Description(1)

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter Mode
of Operation TOP

Update of
OCR0

TOV0 Flag
Set-on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX
83
2466T–AVR–07/10

ATmega16(L)
Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 41 shows a block diagram of the counter and its surroundings.

Figure 41. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the High byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 101.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn
95
2466T–AVR–07/10

ATmega16(L)
Input Capture Unit The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the Analog Comparator unit.
The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the
signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 42. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 42. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (TICIE1 =
1), the Input Capture Flag generates an Input Capture Interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the Low
byte (ICR1L) and then the High byte (ICR1H). When the Low byte is read the High byte is copied
into the High byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the High byte must be written to the ICR1H I/O loca-
tion before the Low byte is written to ICR1L.

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
96
2466T–AVR–07/10

ATmega16(L)
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Set-
ting the COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM21:0 to 3 (see Table 52 on page 129). The actual OC2 value
will only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC2 Register at the compare match between
OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be
a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a
constantly high or low output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2 to toggle its logical level on each compare match (COM21:0 = 1). The waveform
generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set to zero. This fea-
ture is similar to the OC2 toggle in CTC mode, except the double buffer feature of the output
compare unit is enabled in the fast PWM mode.

Phase Correct PWM
Mode

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2) is cleared on the compare match
between TCNT2 and OCR2 while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct PWM
mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 59.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

fOCnPWM
fclk_I/O

N 256⋅
------------------=
124
2466T–AVR–07/10

ATmega16(L)
Serial
Peripheral
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega16 and peripheral devices or between several AVR devices. The ATmega16 SPI
includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65. SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66. The sys-
tem consists of two Shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective Shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
135
2466T–AVR–07/10

ATmega16(L)
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 66. SPI Master-Slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 55 on page 136. For more details on automatic port overrides, refer to “Alter-
nate Port Functions” on page 55.

Table 55. SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MASTER LSB

8 BIT SHIFT REGISTER

MSB SLAVE LSB

8 BIT SHIFT REGISTER
MISO

MOSI

SPI
CLOCK GENERATOR

SCK

SS

MISO

MOSI

SCK

SS

SHIFT
ENABLE
136
2466T–AVR–07/10

ATmega16(L)
The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return data register */

return SPDR;

}

139
2466T–AVR–07/10

ATmega16(L)
Electrical
Interconnection

As depicted in Figure 76, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit Slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 294. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

Data Transfer and
Frame Format

Transferring Bits Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 77. Data Validity

START and STOP
Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without releas-
ing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

SDA

SCL

Data Stable Data Stable

Data Change
173
2466T–AVR–07/10

ATmega16(L)
Assembly code example C example Comments

1 ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2 wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the START condition has been
transmitted

3 in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
START go to ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN);
Load SLA_W into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of address

4 wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the SLA+W has been transmitted,
and ACK/NACK has been received.

5 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN);
Load DATA into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of data

6 wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the DATA has been transmitted, and
ACK/NACK has been received.

7 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_DATA_ACK)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition
185
2466T–AVR–07/10

ATmega16(L)
Figure 115. Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connections.

See “Boundary-scan Chain” on page 232 for a complete description.

Boundary-scan
Specific JTAG
Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not
implemented, but all outputs with tri-state capability can be set in high-impedant state by using
the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

EXTEST; $0 Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having Off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; $1 Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-register con-
sists of a version number, a device number and the manufacturer code chosen by JEDEC. This
is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

SAMPLE_PRELOAD;
$2

Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register.

D Q
From
TDI

ClockDR · AVR_RESET

To
TDO

From other Internal and
External Reset Sources

Internal Reset
230
2466T–AVR–07/10

ATmega16(L)
Boundary-scan
Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
Off-chip connection.

Scanning the Digital
Port Pins

Figure 116 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn – function, and a
bi-directional pin cell that combines the three signals Output Control – OCxn, Output Data –
ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and pin indexes are
not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 117 shows a sim-
ple digital Port Pin as described in the section “I/O Ports” on page 50. The Boundary-scan
details from Figure 116 replaces the dashed box in Figure 117.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 117 to make the
scan chain read the actual pin value. For Analog function, there is a direct connection from the
external pin to the analog circuit, and a scan chain is inserted on the interface between the digi-
tal logic and the analog circuitry.

Figure 116. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

0

1
D Q D Q

G

0

1

Port Pin (PXn)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Pullup Enable (PUE)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF2 LD2

FF1 LD1

LD0FF0
232
2466T–AVR–07/10

ATmega16(L)
controlling/observing any ADC signal, or perform a dummy conversion before using the first
result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal
low (Sample mode).

As an example, consider the task of verifying a 1.5V ±5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 92 are used unless other values are given in the algorithm
in Table 93. Only the DAC and Port Pin values of the Scan-chain are shown. The column
“Actions” describes what JTAG instruction to be used before filling the Boundary-scan Register
with the succeeding columns. The verification should be done on the data scanned out when
scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at
least five times the number of scan bits divided by the maximum hold time, thold,max.

Table 93. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pullup_
Enable

1 SAMPLE
_PRELO
AD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6 Verify the
COMP bit
scanned
out to be
0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11 Verify the
COMP bit
scanned
out to be
1

1 0x200 0x08 1 1 0 0 0

The lower limit is: 1024 1,5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1,5V 1,05 5V⁄⋅ ⋅ 323 0x143= =
240
2466T–AVR–07/10

ATmega16(L)
Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE:SIGNAL2 should always be scanned in as zero.

Boundary-scan
Description
Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. A BSDL file for ATmega16 is
available.

4 PA1.Control

3 PA1.Pullup_Enable

2 PA0.Data

1 PA0.Control

0 PA0.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module
245
2466T–AVR–07/10

ATmega16(L)
Figure 162. Idle Supply Current vs. VCC (32 kHz External Oscillator)

Power-Down Supply
Current

Figure 163. Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

0

5

10

15

20

25

30

35

40

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

85°C
25°C

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µA
)

85°C

25°C

-40°C
306
2466T–AVR–07/10

