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Microcontrollers"
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their architecture, performance, and application focus.
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microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
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medium-scale applications like industrial automation. 32-
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used in complex applications requiring advanced
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range of applications, providing tailored solutions for
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each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
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such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write    

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r16) to data register

out  EEDR,r16

; Write logical one to EEMWE

sbi  EECR,EEMWE

; Start eeprom write by setting EEWE

sbi  EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}
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Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 42 for details on operation of the Watchdog Timer.

Figure 20.  Watchdog Reset During Operation

MCU Control and 
Status Register – 
MCUCSR

The MCU Control and Status Register provides information on which reset source caused an
MCU Reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then reset
the MCUCSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.

CK

CC

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
41
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I/O Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 22. Refer to “Electrical Charac-
teristics” on page 291 for a complete list of parameters.

Figure 22.  I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used, that is,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description for I/O Ports” on page 66.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable – PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
50. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 55. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Ports as General 
Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a functional
description of one I/O-port pin, here generically called Pxn.

Cpin

Logic

Rpu

See Figure 23
"General Digital I/O" for

Details

Pxn
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Alternate Functions of 
Port C

The Port C pins with alternate functions are shown in Table 28. If the JTAG interface is enabled,
the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset
occurs.

The alternate pin configuration is as follows:

• TOSC2 – Port C, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting
output of the Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and
the pin can not be used as an I/O pin. 

• TOSC1 – Port C, Bit 6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous
clocking of Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the
inverting Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the
pin can not be used as an I/O pin.

• TDI – Port C, Bit 5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TDO – Port C, Bit 4

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an I/O pin. 

The TD0 pin is tri-stated unless TAP states that shifts out data are entered.

• TMS – Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK – Port C, Bit 2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

Table 28.  Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 TOSC2 (Timer Oscillator Pin 2)

PC6 TOSC1 (Timer Oscillator Pin 1)

PC5 TDI (JTAG Test Data In)

PC4 TDO (JTAG Test Data Out)

PC3 TMS (JTAG Test Mode Select)

PC2 TCK (JTAG Test Clock)

PC1 SDA (Two-wire Serial Bus Data Input/Output Line)

PC0 SCL (Two-wire Serial Bus Clock Line)
61
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• SDA – Port C, Bit 1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC1 is disconnected from the port and becomes the Serial Data
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation. When this pin is used by the Two-wire Serial Interface, the pull-up can
still be controlled by the PORTC1 bit.

• SCL – Port C, Bit 0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PC0 is disconnected from the port and becomes the Serial Clock
I/O pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation. When this pin is used by the Two-wire Serial Interface, the pull-up can
still be controlled by the PORTC0 bit.

Table 29 and Table 30 relate the alternate functions of Port C to the overriding signals shown in
Figure 26 on page 55. 

Table 29.  Overriding Signals for Alternate Functions in PC7..PC4

Signal
Name PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO

PUOE AS2 AS2 JTAGEN JTAGEN

PUOV 0 0 1 0

DDOE AS2 AS2 JTAGEN JTAGEN

DDOV 0 0 0 SHIFT_IR + SHIFT_DR

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

DIEOE AS2 AS2 JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI –
62
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sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 39.  Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 38.

Special Function IO 
Register – SFIOR

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is written to one, the Timer/Counter1 and Timer/Counter0 prescaler will be reset.
The bit will be cleared by hardware after the operation is performed. Writing a zero to this bit will
have no effect. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a
reset of this prescaler will affect both timers. This bit will always be read as zero.

PSR10

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
88
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Accessing 16-bit 
Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the High byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the Low byte triggers the 16-bit read or write operation. When the Low byte of a
16-bit register is written by the CPU, the High byte stored in the temporary register, and the Low
byte written are both copied into the 16-bit register in the same clock cycle. When the Low byte
of a 16-bit register is read by the CPU, the High byte of the 16-bit register is copied into the tem-
porary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the
Low byte must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

Assembly Code Example(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Example(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;
/* Read TCNT1 into i */

i = TCNT1;

...
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An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the compare output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5,6,7,14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1
or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =
14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 46. The figure shows
fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set
when a compare match occurs.

fOCnA
fclk_I/O

2 N 1 OCRnA+( )⋅ ⋅
---------------------------------------------------=

RFPWM
TOP 1+( )log

2( )log
-----------------------------------=
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Figure 59.  Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2 pin. Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM out-
put can be generated by setting the COM21:0 to 3 (see Table 53 on page 129). The actual OC2
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2 Register at the compare match
between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the OC2
Register at compare match between OCR2 and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the out-
put will be continuously low and if set equal to MAX the output will be continuously high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of Period 2 in Figure 59 OCn has a transition from high to l ow even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that will give transition without Compare Match:

• OCR2A changes its value from Max, like in Figure 59. When the OCR2A value is MAX the 
OCn pin value is the same as the result of a down-counting Compare Match. To ensure 
symmetry around BOTTOM the OCn value at MAX must be correspond the the result of an 
up-counting Compare Match.

• The Timer starts counting from a value higher than the one in OCR2A, and for that reason 
misses the Compare Match and hence the OCn that would have happened on the way up.

TOVn Interrupt Flag Set

OCn Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Update

fOCnPCPWM
fclk_I/O

N 510⋅
------------------=
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Serial 
Peripheral 
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega16 and peripheral devices or between several AVR devices. The ATmega16 SPI
includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65.  SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement. 

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66. The sys-
tem consists of two Shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective Shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
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Table 69.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max (1) 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps

1. UBRR = 0, Error = 0.0%
169
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Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.
193
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sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.

Analog Input Circuitry The Analog Input Circuitry for single ended channels is illustrated in Figure 105. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 105.  Analog Input Circuitry

Analog Noise 
Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

1. Keep analog signal paths as short as possible. Keep them well away from high-
speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage 
via an LC network as shown in Figure 106.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not 
switch while a conversion is in progress.

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
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Scanning the ADC

Figure 123 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell from
Figure 122 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all analog
inputs are shared with a digital port pin as well. 

Figure 123.  Analog to Digital Converter

The signals are described briefly in Table 92.

Table 91.  Boundary-scan Signals for the Analog Comparator 

Signal 
Name

Direction as Seen from 
the Comparator Description

Recommended Input 
when Not in Use

Output Values when 
Recommended Inputs are Used

AC_IDLE Input Turns off Analog
comparator when true

1 Depends upon µC code being 
executed

ACO Output Analog Comparator
Output

Will become input to µC 
code being executed

0

ACME Input Uses output signal from
ADC mux when true

0 Depends upon µC code being 
executed

ACBG Input Bandgap Reference
enable

0 Depends upon µC code being 
executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-

+

-
10x 20x

G10 G20

ST
ACLK

AMPEN

2.56V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

GNDEN

PASSEN

ACTEN

C
O

M
P

SCTEST
ADCBGEN

To Comparator

1.22V
ref AREF
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Performing Page 
Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer must
be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary 
Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR. The con-
tent of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a page write operation or by writing the RWWSRE bit in
SPMCR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer.
Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

Performing a Page 
Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written zero
during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM 
Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCR is cleared. This means that the interrupt can be used instead of polling
the SPMCR Register in software. When using the SPM interrupt, the Interrupt Vectors should be
moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 45.

Consideration while 
Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

Prevent Reading the 
RWW Section during 
Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the Self-Programming operation. The RWWSB in the SPMCR will be set as long as the RWW
section is busy. During self-programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 45, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 256 for an example.
253
2466T–AVR–07/10



ATmega16(L)
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not
; ready yet

ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

ATmega16 Boot 
Loader Parameters

In Table 100 through Table 102, the parameters used in the description of the self programming
are given. 

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 125

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on page
247 and “RWW – Read-While-Write Section” on page 247

Table 100.  Boot Size Configuration(1)

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application 
Flash 
Section

Boot 
Loader 
Flash 
Section

End 
Application 
section

Boot Reset 
Address 
(start Boot 
Loader 
Section)

1 1
128 
words

2
$0000 - 
$1F7F

$1F80 - 
$1FFF

$1F7F $1F80 

1 0
256 
words

4
$0000 - 
$1EFF

$1F00 - 
$1FFF

$1EFF $1F00

0 1
512 
words

8
$0000 - 
$1DFF

$1E00 - 
$1FFF

$1DFF $1E00

0 0
1024 
words

16
$0000 - 
$1BFF

$1C00 - 
$1FFF

$1BFF $1C00

Table 101.  Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 112 $0000 - $1BFF

No Read-While-Write section (NRWW) 16 $1C00 - $1FFF
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Memory 
Programming

Program And Data 
Memory Lock Bits

The ATmega16 provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 104. The Lock bits can only be
erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 103.  Lock Bit Byte(1)

Lock Bit Byte Bit No. Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 104.  Lock Bit Protection Modes 

Memory Lock Bits(2) Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is 
disabled in Parallel and SPI/JTAG Serial Programming 
mode. The Fuse bits are locked in both Serial and Parallel 
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in Parallel and SPI/JTAG Serial 
Programming mode. The Fuse bits are locked in both 
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If interrupt 
vectors are placed in the Boot Loader section, interrupts 
are disabled while executing from the Application section.
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4. The Flash is programmed one page at a time. The page size is found in Table 107 on page 
262. The memory page is loaded one byte at a time by supplying the 6 LSB of the 
address and data together with the Load Program Memory Page instruction. To ensure 
correct loading of the page, the data Low byte must be loaded before data High byte is 
applied for a given address. The Program Memory Page is stored by loading the Write 
Program Memory Page instruction with the 7 MSB of the address. If polling is not used, 
the user must wait at least tWD_FLASH before issuing the next page. (See Table 115). 
Accessing the SPI Serial Programming interface before the Flash write operation com-
pletes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data 
together with the appropriate Write instruction. An EEPROM memory location is first 
automatically erased before new data is written. If polling is not used, the user must wait 
at least tWD_EEPROM before issuing the next byte. (See Table 115). In a chip erased device, 
no $FFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal 
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Data Polling Flash When a page is being programmed into the Flash, reading an address location within the page
being programmed will give the value $FF. At the time the device is ready for a new page, the
programmed value will read correctly. This is used to determine when the next page can be writ-
ten. Note that the entire page is written simultaneously and any address within the page can be
used for polling. Data polling of the Flash will not work for the value $FF, so when programming
this value, the user will have to wait for at least tWD_FLASH before programming the next page. As
a chip erased device contains $FF in all locations, programming of addresses that are meant to
contain $FF, can be skipped. See Table 115 for tWD_FLASH value

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is ready for a
new byte, the programmed value will read correctly. This is used to determine when the next
byte can be written. This will not work for the value $FF, but the user should have the following in
mind: As a chip erased device contains $FF in all locations, programming of addresses that are
meant to contain $FF, can be skipped. This does not apply if the EEPROM is re-programmed
without chip erasing the device. In this case, data polling cannot be used for the value $FF, and
the user will have to wait at least tWD_EEPROM before programming the next byte. See Table 115
for tWD_EEPROM value.
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Figure 154.  Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 155.  Active Supply Current vs. VCC (32 kHz External Oscillator)
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Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k  + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2
BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1 / 2
BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
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