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ATmega16(L)
Overview The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega16 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

Block Diagram Figure 2.  Block Diagram
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ATmega16(L)
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

EEPROM Write During 
Power-down Sleep 
Mode

When entering Power-down Sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.

Preventing EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Start eeprom read by writing EERE

sbi  EECR,EERE

; Read data from data register

in  r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

22
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ATmega16(L)
choosing capacitors for use with crystals are given in Table 4. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 12.  Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

Table 4.  Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency Range 

(MHz)
Recommended Range for Capacitors 
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1
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ATmega16(L)
When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 8.

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

Calibrated Internal 
RC Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0 MHz, 2.0 MHz, 4.0 MHz, or 8.0 MHz
clock. All frequencies are nominal values at 5V and 25°C. This clock may be selected as the
system-clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will operate
with no external components. The CKOPT Fuse should always be unpro-grammed when using
this clock option. During Reset, hardware loads the calibration byte into the OSCCAL Register
and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0 MHz, 2.0 MHz, 4.0
MHz or 8.0 MHz Oscillator frequency selected, this calibration gives a frequency within ±3% of
the nominal frequency. Using calibration methods as described in application notes available at
www.atmel.com/avr it is possible to achieve ±1% accuracy at any given VCC and Temperature.
When this Oscillator is used as the Chip Clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the reset time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 261.

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 10. XTAL1 and XTAL2 should be left unconnected (NC).

Note: 1. The device is shipped with this option selected.

Table 8.  Start-up Times for the External RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset 
(VCC = 5.0V) Recommended Usage

00 18 CK – BOD enabled

01 18 CK 4.1 ms Fast rising power

10 18 CK 65 ms Slowly rising power

11 6 CK(1) 4.1 ms Fast rising power or BOD enabled

Table 9.  Internal Calibrated RC Oscillator Operating Modes

 CKSEL3..0 Nominal Frequency (MHz)

0001(1) 1.0

0010 2.0

0011 4.0

0100 8.0

Table 10.  Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10(1) 6 CK 65 ms Slowly rising power

11 Reserved
29
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ATmega16(L)
• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 35. The value on the INT0 pin is sampled before detecting edges.
If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate
an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is
selected, the low level must be held until the completion of the currently executing instruction to
generate an interrupt.

MCU Control and 
Status Register – 
MCUCSR

• Bit 6 – ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and
the corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on
INT2 activates the interrupt. If ISC2 is written to one, a rising edge on INT2 activates the inter-
rupt. Edges on INT2 are registered asynchronously. Pulses on INT2 wider than the minimum
pulse width given in Table 36 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is rec-
ommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR Register. Then,
the ISC2 bit can be changed. Finally, the INT2 Interrupt Flag should be cleared by writing a logi-
cal one to its Interrupt Flag bit (INTF2) in the GIFR Register before the interrupt is re-enabled.

General Interrupt 
Control Register – 
GICR

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU
General Control Register (MCUCR) define whether the External Interrupt is activated on rising

Table 35.  Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Table 36.  Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT
Minimum pulse width for 
asynchronous external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
69
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Figure 36.  Timer/Counter Timing Diagram, Setting of OCF0, with Prescaler (fclk_I/O/8)

Figure 37 shows the setting of OCF0 and the clearing of TCNT0 in CTC mode.

Figure 37.  Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Pres-
caler (fclk_I/O/8)
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ATmega16(L)
Accessing 16-bit 
Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the High byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the Low byte triggers the 16-bit read or write operation. When the Low byte of a
16-bit register is written by the CPU, the High byte stored in the temporary register, and the Low
byte written are both copied into the 16-bit register in the same clock cycle. When the Low byte
of a 16-bit register is read by the CPU, the High byte of the 16-bit register is copied into the tem-
porary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the
Low byte must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

Assembly Code Example(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Example(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;
/* Read TCNT1 into i */

i = TCNT1;

...
92
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Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 41 shows a block diagram of the counter and its surroundings.

Figure 41.  Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the High byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 101.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)
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SS Pin 
Functionality

Slave Mode When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs except MISO which can be user
configured as an output, and the SPI is passive, which means that it will not receive incoming
data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the Slave Bit Counter synchronous
with the Master Clock generator. When the SS pin is driven high, the SPI Slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

Master Mode When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another Master selecting the SPI as a
Slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of 
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is 
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a Slave Select, it must be set by the user to re-enable SPI Master
mode.

SPI Control Register – 
SPCR

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the global interrupt enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
140
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Synchronous Clock 
Operation

When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxD) is sampled at the
opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 71.  Synchronous Mode XCK Timing.

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is
used for data change. As Figure 71 shows, when UCPOL is zero the data will be changed at ris-
ing XCK edge and sampled at falling XCK edge. If UCPOL is set, the data will be changed at
falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 72 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 72.  Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
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Receiving Frames with 
9 Databits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB
before reading the low bits from the UDR. This rule applies to the FE, DOR and PE status Flags
as well. Read status from UCSRA, then data from UDR. Reading the UDR I/O location will
change the state of the receive buffer FIFO and consequently the TXB8, FE, DOR and PE bits,
which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both 9-bit
characters and the status bits.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( !(UCSRA & (1<<RXC)) )

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if ( status & (1<<FE)|(1<<DOR)|(1<<PE) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

155
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Figure 89.  Formats and States in the Master Receiver Mode

$08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
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0

0

0

0
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X
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ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1
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NOT ACK has been received
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No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will 
be reset
STOP condition followed by a START condition will be 
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$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
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$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
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Table 75.  Status Codes for Master Receiver Mode  (Continued)

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS
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controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

Device Identification 
Register

Figure 114 shows the structure of the Device Identification Register. 

Figure 114.  The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on. However, some
revisions deviate from this rule, and the relevant version number is shown in Table 87.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega16 is listed in Table 88.

Manufacturer ID The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 89.

Reset Register The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the Fuse set-
tings for the clock options, the part will remain reset for a Reset Time-Out Period (refer to “Clock
Sources” on page 25) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 115.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Table 87.  JTAG Version Numbers

Version JTAG Version Number (Hex)

ATmega16 revision G 0x6

ATmega16 revision H 0xE

ATmega16 revision I 0x8

ATmega16 revision J 0x9

ATmega16 revision K 0xA

ATmega16 revision L 0xB

Table 88.  AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega16 0x9403

Table 89.  Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F
229
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Figure 118.  Additional Scan Signal for the Two-wire Interface

Scanning the RESET 
Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel Programming. An observe-only cell as shown in Figure 119 is
inserted both for the 5V reset signal; RSTT, and the 12V reset signal; RSTHV. 

Figure 119.  Observe-only Cell

Scanning the Clock 
Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External RC, External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal
Oscillator, and Ceramic Resonator.

Figure 120 shows how each Oscillator with external connection is supported in the scan chain.
The Enable signal is supported with a general boundary-scan cell, while the Oscillator/Clock out-
put is attached to an observe-only cell. In addition to the main clock, the Timer Oscillator is
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this
Oscillator does not have external connections. 

Pxn

PUExn

ODxn

IDxn

TWIEN

OCxn

Slew-rate Limited

SRC

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From  System Pin To System Logic

FF1
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Note: Incorrect setting of the switches in Figure 123 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 123. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 92 should
be used. The user is recommended not to use the Differential Gain stages during scan. Switch-
cap based gain stages require fast operation and accurate timing which is difficult to obtain
when used in a scan chain. Details concerning operations of the differential gain stage is there-
fore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 123 with a successive approxi-
mation algorithm implemented in the digital logic. When used in Boundary-scan, the problem is
usually to ensure that an applied analog voltage is measured within some limits. This can easily
be done without running a successive approximation algorithm: apply the lower limit on the digi-
tal DAC[9:0] lines, make sure the output from the comparator is low, then apply the upper limit
on the digital DAC[9:0] lines, and verify the output from the comparator to be high. 

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.

When using the ADC, remember the following:

• The Port Pin for the ADC channel in use must be configured to be an input with pull-up 
disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when 
enabling the ADC. The user is advised to wait at least 200 ns after enabling the ADC before 

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input Input Mux for negative input for 
differential signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative input for 
differential signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative input for 
differential signal, bit 0

0 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of 
comparator. (Active low)

1 1

SCTEST Input Switch-cap TEST enable. Output 
from x10 gain stage send out to 
Port Pin having ADC_4

0 0

ST Input Output of gain stages will settle 
faster if this signal is high first two 
ACLK periods after AMPEN goes 
high.

0 0

VCCREN Input Selects Vcc as the ACC reference 
voltage.

0 0

Table 92.  Boundary-scan Signals for the ADC  (Continued)

Signal 
Name

Direction as Seen
from the ADC Description

Recommended 
Input when Not 
in Use

Output Values when Recommended 
Inputs are used, and CPU is not 
Using the ADC
239
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Notes: 1. Values are guidelines only.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

VINT Internal Voltage Reference 2.3 2.6 2.9 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 122.  ADC Characteristics (Continued)

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units
298
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Figure 186.  Reset Input Threshold Voltage vs. VCC (VIL, Reset Pin Read As '0')

Figure 187.  Reset Input Pin Hysteresis vs. VCC
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Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronized to the asynchronous timer
clock is written when the asynchronous Timer/Counter register(TCNTx) is 0x00.

 Problem Fix / Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register(TCCRx), asynchronous
Timer Counter Register(TCNTx), or asynchronous Output Compare Register(OCRx).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega16 while reading the Device ID
Registers of preceding devices of the boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-
ister triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

ATmega16(L) Rev. 
K

• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will
take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronized to the asynchronous timer
clock is written when the asynchronous Timer/Counter register(TCNTx) is 0x00.
341
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9. Added Table 73, “TWI Bit Rate Prescaler,” on page 182 to describe the TWPS bits in
the “TWI Status Register – TWSR” on page 181.

10. Added section “Default Clock Source” on page 25.

11. Added note about frequency variation when using an external clock. Note added in
“External Clock” on page 31. An extra row and a note added in Table 118 on page 293. 

12. Various minor TWI corrections.

13. Added “Power Consumption” data in “Features” on page 1.

14. Added section “EEPROM Write During Power-down Sleep Mode” on page 22.

15. Added note about Differential Mode with Auto Triggering in “Prescaling and Conver-
sion Timing” on page 207.

16. Added updated “Packaging Information” on page 337.

Rev. 2466E-10/02 1. Updated “DC Characteristics” on page 291.

Rev. 2466D-09/02 1. Changed all Flash write/erase cycles from 1,000 to 10,000.

2. Updated the following tables: Table 4 on page 26, Table 15 on page 38, Table 42 on
page 85, Table 45 on page 111, Table 46 on page 111, Table 59 on page 143, Table 67
on page 167, Table 90 on page 235, Table 102 on page 258, “DC Characteristics” on
page 291, Table 119 on page 293, Table 121 on page 295, and Table 122 on page 297.

3. Updated “Errata” on page 340.

Rev. 2466C-03/02 1. Updated typical EEPROM programming time, Table 1 on page 20.

2. Updated typical start-up time in the following tables:

Table 3 on page 25, Table 5 on page 27, Table 6 on page 28, Table 8 on page 29, Table 9
on page 29, and Table 10 on page 29.

3. Updated Table 17 on page 43 with typical WDT Time-out.

4. Added Some Preliminary Test Limits and Characterization Data.

Removed some of the TBD's in the following tables and pages:

Table 15 on page 38, Table 16 on page 42, Table 116 on page 272 (table removed in docu-
ment review #D), “Electrical Characteristics” on page 291, Table 119 on page 293, Table
121 on page 295, and Table 122 on page 297.

5. Updated TWI Chapter.

Added the note at the end of the “Bit Rate Generator Unit” on page 178.

6. Corrected description of ADSC bit in “ADC Control and Status Register A – ADCSRA”
on page 219.

7. Improved description on how to do a polarity check of the ADC doff results in “ADC
Conversion Result” on page 216.
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