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ATmega16(L)
Interrupts This section describes the specifics of the interrupt handling as performed in ATmega16. For a
general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on
page 13.

Interrupt Vectors 
in ATmega16

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Boot Loader Support – Read-While-Write Self-Programming” on page 246.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot
Flash section. The address of each Interrupt Vector will then be the address in this table added
to the start address of the Boot Flash section.

Table 19 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa. 

Table 18.  Reset and Interrupt Vectors

Vector No.
Program

Address(2) Source Interrupt Definition

1 $000(1) RESET External Pin, Power-on Reset, Brown-out 
Reset, Watchdog Reset, and JTAG AVR 
Reset

2 $002 INT0 External Interrupt Request 0

3 $004 INT1 External Interrupt Request 1

4 $006 TIMER2 COMP Timer/Counter2 Compare Match

5 $008 TIMER2 OVF Timer/Counter2 Overflow

6 $00A TIMER1 CAPT Timer/Counter1 Capture Event

7 $00C TIMER1 COMPA Timer/Counter1 Compare Match A

8 $00E TIMER1 COMPB Timer/Counter1 Compare Match B

9 $010 TIMER1 OVF Timer/Counter1 Overflow

10 $012 TIMER0 OVF Timer/Counter0 Overflow

11 $014 SPI, STC Serial Transfer Complete

12 $016 USART, RXC USART, Rx Complete

13 $018 USART, UDRE USART Data Register Empty

14 $01A USART, TXC USART, Tx Complete

15 $01C ADC ADC Conversion Complete

16 $01E EE_RDY EEPROM Ready

17 $020 ANA_COMP Analog Comparator

18 $022 TWI Two-wire Serial Interface

19 $024 INT2 External Interrupt Request 2

20 $026 TIMER0 COMP Timer/Counter0 Compare Match

21 $028 SPM_RDY Store Program Memory Ready
45
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ATmega16(L)
Unit” on page 73. for details. The compare match event will also set the Compare Flag (OCF0)
which can be used to generate an output compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. However, when using the register or bit
defines in a program, the precise form must be used, that is, TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 37 are also used extensively throughout the document.

Timer/Counter 
Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the clock select logic which is controlled by the clock select (CS02:0) bits located
in the Timer/Counter Control Register (TCCR0). For details on clock sources and prescaler, see
“Timer/Counter0 and Timer/Counter1 Prescalers” on page 87.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
28 shows a block diagram of the counter and its surroundings.

Figure 28.  Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

TOP Signalize that TCNT0 has reached maximum value.

BOTTOM Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of

Table 37.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR0 Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int. Req.)

Clock Select

TOP

Tn
Edge

Detector

( From Prescaler )

clkTn

BOTTOM

direction

clear
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ATmega16(L)
Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 41 shows a block diagram of the counter and its surroundings.

Figure 41.  Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the High byte temporary register
(TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read,
and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data
bus. It is important to notice that there are special cases of writing to the TCNT1 Register when
the counter is counting that will give unpredictable results. The special cases are described in
the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the
timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 101.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

( From Prescaler )

clkTn
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temporary register (TEMP). However, it is a good practice to read the Low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The High byte (OCR1xH) has to be
written first. When the High byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the Low byte (OCR1xL) is written to the lower eight
bits, the High byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Com-
pare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 92.

Force Output 
Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM1x1:0 bits settings define whether the OC1x pin is set, cleared or
toggled). 

Compare Match 
Blocking by TCNT1 
Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output 
Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the output compare
units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1
equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform
generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly,
do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the force output compare
(FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when changing
between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.
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will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 51.  Timer/Counter Timing Diagram, no Prescaling

Figure 52 shows the same timing data, but with the prescaler enabled. 

Figure 52.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)
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Compare Match 
Output Unit

The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses
the COM21:0 bits for defining the Output Compare (OC2) state at the next compare match. Also,
the COM21:0 bits control the OC2 pin output source. Figure 56 shows a simplified schematic of
the logic affected by the COM21:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the fig-
ure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT)
that are affected by the COM21:0 bits are shown. When referring to the OC2 state, the reference
is for the internal OC2 Register, not the OC2 pin.

Figure 56.  Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2) from the waveform
generator if either of the COM21:0 bits are set. However, the OC2 pin direction (input or output)
is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Regis-
ter bit for the OC2 pin (DDR_OC2) must be set as output before the OC2 value is visible on the
pin. The port override function is independent of the Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC2 state before the out-
put is enabled. Note that some COM21:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 128.

Compare Output Mode 
and Waveform 
Generation

The waveform generator uses the COM21:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM21:0 = 0 tells the Waveform Generator that no action on the OC2
Register is to be performed on the next compare match. For compare output actions in the non-
PWM modes refer to Table 51 on page 129. For fast PWM mode, refer to Table 52 on page 129,
and for phase correct PWM refer to Table 53 on page 129.

A change of the COM21:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2 strobe bits.
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Serial 
Peripheral 
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega16 and peripheral devices or between several AVR devices. The ATmega16 SPI
includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65.  SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement. 

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66. The sys-
tem consists of two Shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective Shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
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The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

Receive Compete Flag 
and Interrupt

The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (that is, does not contain any unread data). If the receiver is disabled (RXEN =
0), the receive buffer will be flushed and consequently the RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive
Complete Interrupt will be executed as long as the RXC Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDR in order to clear the RXC Flag, otherwise a new interrupt
will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR) and Parity
Error (PE). All can be accessed by reading UCSRA. Common for the Error Flags is that they are
located in the receive buffer together with the frame for which they indicate the error status. Due
to the buffering of the Error Flags, the UCSRA must be read before the receive buffer (UDR),
since reading the UDR I/O location changes the buffer read location. Another equality for the
Error Flags is that they can not be altered by software doing a write to the flag location. How-
ever, all flags must be set to zero when the UCSRA is written for upward compatibility of future
USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FE Flag is zero when the stop bit was correctly read (as one),
and the FE Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FE Flag
is not affected by the setting of the USBS bit in UCSRC since the receiver ignores all, except for
the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to
UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in
the receive Shift Register, and a new start bit is detected. If the DOR Flag is set there was one or
more serial frame lost between the frame last read from UDR, and the next frame read from
UDR. For compatibility with future devices, always write this bit to zero when writing to UCSRA.
The DOR Flag is cleared when the frame received was successfully moved from the Shift Regis-
ter to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error
when received. If parity check is not enabled the PE bit will always be read zero. For compatibil-
ity with future devices, always set this bit to zero when writing to UCSRA. For more details see
“Parity Bit Calculation” on page 149 and “Parity Checker” on page 156.

Parity Checker The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type of parity
check to be performed (odd or even) is selected by the UPM0 bit. When enabled, the parity
checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (PE) Flag can then be read by software to
check if the frame had a parity error.

The PE bit is set if the next character that can be read from the receive buffer had a parity error
when received and the parity checking was enabled at that point (UPM1 = 1). This bit is valid
until the receive buffer (UDR) is read.
156
2466T–AVR–07/10



ATmega16(L)
• Bit 0 – TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDR.

USART Control and 
Status Register C – 
UCSRC

The UCSRC Register shares the same I/O location as the UBRRH Register. See the “Accessing
UBRRH/ UCSRC Registers” on page 162 section which describes how to access this register.

• Bit 7 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when
reading UCSRC. The URSEL must be one when writing the UCSRC.

• Bit 6 – UMSEL: USART Mode Select

This bit selects between Asynchronous and Synchronous mode of operation.

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPM0 setting.
If a mismatch is detected, the PE Flag in UCSRA will be set.

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Bit 7 6 5 4 3 2 1 0

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 0 0 0 0 1 1 0

Table 63.  UMSEL Bit Settings

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 64.  UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 65.  USBS Bit Settings

USBS Stop Bit(s)

0 1-bit

1 2-bit
166
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Table 69.  Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max (1) 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps

1. UBRR = 0, Error = 0.0%
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Two-wire Serial 
Interface

Features • Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device Can Operate as Transmitter or Receiver
• 7-bit Address Space allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition causes Wake-up when AVR is in Sleep Mode

Two-wire Serial 
Interface Bus 
Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 76.  TWI Bus Interconnection

TWI Terminology The following definitions are frequently encountered in this section.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Table 72.  TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also 
generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
172
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sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.

Analog Input Circuitry The Analog Input Circuitry for single ended channels is illustrated in Figure 105. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 105.  Analog Input Circuitry

Analog Noise 
Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

1. Keep analog signal paths as short as possible. Keep them well away from high-
speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply voltage 
via an LC network as shown in Figure 106.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not 
switch while a conversion is in progress.

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
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sions. For a complete description of this bit, see “The ADC Data Register – ADCL and ADCH” on
page 220.

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 84 for details. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set).

Table 84.  Input Channel and Gain Selections 

MUX4..0
Single Ended 
Input

Positive Differential 
Input

Negative Differential 
Input Gain

00000 ADC0

00001 ADC1

00010 ADC2

00011 ADC3 N/A

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000 ADC0 ADC0 10x

01001 ADC1 ADC0 10x

01010 ADC0 ADC0 200x

01011 ADC1 ADC0 200x

01100 ADC2 ADC2 10x

01101 ADC3 ADC2 10x

01110 ADC2 ADC2 200x

01111 ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 ADC1 ADC1 1x

10010 N/A ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 ADC2 ADC2 1x

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x
218
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39 PD7.Control

38 PD7.Pullup_Enable

37 PC0.Data Port C

36 PC0.Control

35 PC0.Pullup_Enable

34 PC1.Data

33 PC1.Control

32 PC1.Pullup_Enable

31 PC6.Data

30 PC6.Control

29 PC6.Pullup_Enable

28 PC7.Data

27 PC7.Control

26 PC7.Pullup_Enable

25 TOSC 32 kHz Timer Oscillator

24 TOSCON

23 PA7.Data Port A

22 PA7.Control

21 PA7.Pullup_Enable

20 PA6.Data

19 PA6.Control

18 PA6.Pullup_Enable

17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable

14 PA4.Data

13 PA4.Control

12 PA4.Pullup_Enable

11 PA3.Data

10 PA3.Control

9 PA3.Pullup_Enable

8 PA2.Data

7 PA2.Control

6 PA2.Pullup_Enable

5 PA1.Data

Table 94.  ATmega16 Boundary-scan Order  (Continued)

Bit Number Signal Name Module
244
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Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash during Self-Programming” on page 251 for details about the use of
Z-pointer during Self-Programming.

Table 102.  Explanation of Different Variables used in Figure 126 and the Mapping to the Z-
pointer

Variable
Corresponding

Z-value(1) Description

PCMSB
12 Most significant bit in the Program Counter. 

(The Program Counter is 13 bits PC[12:0])

PAGEMSB
5 Most significant bit which is used to address the 

words within one page (64 words in a page 
requires 6 bits PC [5:0]).

ZPCMSB
Z13 Bit in Z-register that is mapped to PCMSB. 

Because Z0 is not used, the ZPCMSB equals 
PCMSB + 1.

ZPAGEMSB
Z6 Bit in Z-register that is mapped to PAGEMSB. 

Because Z0 is not used, the ZPAGEMSB 
equals PAGEMSB + 1.

PCPAGE
PC[12:6] Z13:Z7 Program Counter page address: Page select, 

for Page Erase and Page Write

PCWORD
PC[5:0] Z6:Z1 Program Counter word address: Word select, 

for filling temporary buffer (must be zero during 
page write operation)
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Figure 130.  Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 266 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word Low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word High byte can now be read at DATA.

6. Set OE to “1”.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 266 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

Programming the 
Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 266 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “0” and BS2 to “0”.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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Programming the 
Fuse High Bits

The algorithm for programming the Fuse high bits is as follows (refer to “Programming the Flash”
on page 266 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Figure 131.  Programming the Fuses

Programming the Lock 
Bits

The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 266 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and 
Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 266 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be 
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be 
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at 
DATA (“0” means programmed).

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

$40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

$40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

BS2
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Figure 172.  Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer Disabled)

Figure 173.  Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled)
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Pin Thresholds And 
Hysteresis

Figure 182.  I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read As '1')

Figure 183.  I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read As '0')
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Figure 190.  Bandgap Voltage vs. VCC

Figure 191.  Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)
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