
Microchip Technology - ATMEGA16L-8PC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega16l-8pc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega16l-8pc-4426305
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega16(L)
General Purpose
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register Low Byte

R27 $1B X-register High Byte

R28 $1C Y-register Low Byte

R29 $1D Y-register High Byte

R30 $1E Z-register Low Byte

R31 $1F Z-register High Byte
11
2466T–AVR–07/10

ATmega16(L)
AVR ATmega16

Memories
This section describes the different memories in the ATmega16. The AVR architecture has two
main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega16 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

In-System
Reprogrammable
Flash Program
Memory

The ATmega16 contains 16 Kbytes On-chip In-System Reprogrammable Flash memory for pro-
gram storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K ×
16. For software security, the Flash Program memory space is divided into two sections, Boot
Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega16 Pro-
gram Counter (PC) is 13 bits wide, thus addressing the 8K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support – Read-While-Write Self-Programming” on page
246. “Memory Programming” on page 259 contains a detailed description on Flash data serial
downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 8. Program Memory Map

$0000

$1FFF

Application Flash Section

Boot Flash Section
16
2466T–AVR–07/10

ATmega16(L)
choosing capacitors for use with crystals are given in Table 4. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 12. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

Table 4. Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency Range

(MHz)
Recommended Range for Capacitors
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1
26
2466T–AVR–07/10

ATmega16(L)
the double buffering feature. If the new value written to OCR0 is lower than the current value of
TCNT0, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC0 output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM01:0 = 1). The OC0 value will not be visible on the port pin unless the data direction for the
pin is set to output. The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2
when OCR0 is set to zero (0x00). The waveform frequency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0) is cleared on the compare
match between TCNT0 and OCR0, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 32. The TCNT0 value is in the timing diagram shown as a histo-
gram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0 and TCNT0.

Figure 32. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCn
fclk_I/O

2 N 1 OCRn+()⋅ ⋅
---=

TCNTn

OCRn Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Interrupt Flag Set

4 5 6 7
77
2466T–AVR–07/10

ATmega16(L)
Figure 40. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 25 on page 58, and Table 31 on page 63 for
Timer/Counter1 pin placement and description.

Registers The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 92. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these regis-
ters are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-
put Compare Units” on page 98. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an output compare interrupt request.

Clock Select

Timer/Counter
D

AT
A

B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
90
2466T–AVR–07/10

ATmega16(L)
The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the analog comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and Low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 92.

Timer/Counter
Interrupt Mask
Register – TIMSK(1)

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer sections.

• Bit 5 – TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture Interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 45.) is executed when the ICF1 Flag, located in TIFR, is set.

• Bit 4 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 45.) is executed when the OCF1A Flag, located in
TIFR, is set.

• Bit 3 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 45.) is executed when the OCF1B Flag, located in
TIFR, is set.

• Bit 2 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 45.) is executed when the TOV1 Flag, located in TIFR, is set.

Timer/Counter
Interrupt Flag Register
– TIFR

Note: This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in
this section. The remaining bits are described in their respective timer sections.

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
115
2466T–AVR–07/10

ATmega16(L)
8-bit
Timer/Counter2
with PWM and
Asynchronous
Operation

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:
• Single Compare unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
• Allows clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 53. For the actual place-
ment of I/O pins, refer to “Pinout ATmega16” on page 2. CPU accessible I/O Registers, including
I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are
listed in the “8-bit Timer/Counter Register Description” on page 128.

Figure 53. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt
request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and
TIMSK are not shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCn
(Int.Req.)

Synchronization Unit

OCRn

TCCRn

ASSRn
Status flags

clkI/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clkI/O
117
2466T–AVR–07/10

ATmega16(L)
Serial
Peripheral
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega16 and peripheral devices or between several AVR devices. The ATmega16 SPI
includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65. SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66. The sys-
tem consists of two Shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective Shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
135
2466T–AVR–07/10

ATmega16(L)
The following code example shows how to read the UCSRC Register contents.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordi-
nary register, as long as the previous instruction did not access the register location.

USART Register
Description

USART I/O Data
Register – UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDR. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDR Register location. Reading the
UDR Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and
set to zero by the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data
written to UDR when the UDRE Flag is not set, will be ignored by the USART Transmitter. When
data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter will load the
data into the transmit Shift Register when the Shift Register is empty. Then the data will be seri-
ally transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use read modify
write instructions (SBI and CBI) on this location. Be careful when using bit test instructions (SBIC
and SBIS), since these also will change the state of the FIFO.

Assembly Code Example(1)

USART_ReadUCSRC:

; Read UCSRC

in r16,UBRRH

in r16,UCSRC

ret

C Code Example(1)

unsigned char USART_ReadUCSRC(void)

{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

return ucsrc;

}

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDR (Read)

TXB[7:0] UDR (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
163
2466T–AVR–07/10

ATmega16(L)
Electrical
Interconnection

As depicted in Figure 76, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit Slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 294. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

Data Transfer and
Frame Format

Transferring Bits Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 77. Data Validity

START and STOP
Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other Master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without releas-
ing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

SDA

SCL

Data Stable Data Stable

Data Change
173
2466T–AVR–07/10

ATmega16(L)
TWI Register
Description

TWI Bit Rate Register
– TWBR

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 178 for calculating bit rates.

TWI Control Register –
TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own Slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
180
2466T–AVR–07/10

ATmega16(L)
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag
is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
184
2466T–AVR–07/10

ATmega16(L)
Several different scenarios may arise during arbitration, as described below:

• Two or more Masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the Masters will know about the bus contention.

• Two or more Masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The Masters
trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Losing Masters will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

• Two or more Masters are accessing different Slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will
lose the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if
they are being addressed by the winning Master. If addressed, they will switch to SR or ST
mode, depending on the value of the READ/WRITE bit. If they are not being addressed, they
will switch to not addressed Slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

This is summarized in Figure 96. Possible status values are given in circles.

Figure 96. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP
200
2466T–AVR–07/10

ATmega16(L)
JTAG Interface
and On-chip
Debug System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories
– Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Breakpoints on Single Address or Address Range
– Data Memory Breakpoints on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip Debugging

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-
ming via the JTAG Interface” on page 278 and “IEEE 1149.1 (JTAG) Boundary-scan” on page
228, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 112 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI input and TDO output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for JTAG Serial Programming via the JTAG interface. The
Internal Scan Chain and Break Point Scan Chain are used for On-chip Debugging only.

Test Access Port –
TAP

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test Mode Select. This pin is used for navigating through the TAP-controller state
machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction register or Data Register.
222
2466T–AVR–07/10

ATmega16(L)
Figure 120. Boundary-scan Cells for Oscillators and Clock Options

Table 90 summaries the scan registers for the external clock pin XTAL1, Oscillators with
XTAL1/XTAL2 connections as well as 32 kHz Timer Oscillator.

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between

the Internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is
preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock
configuration is considered fixed for a given application. The user is advised to scan the same
clock option as to be used in the final system. The enable signals are supported in the scan
chain because the system logic can disable clock options in sleep modes, thereby disconnect-
ing the Oscillator pins from the scan path if not provided. The INTCAP Fuses are not
supported in the scan-chain, so the boundary scan chain can not make a XTAL Oscillator
requiring internal capacitors to run unless the fuse is correctly programmed.

Scanning the Analog
Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 121. The
Boundary-scan cell from Figure 122 is attached to each of these signals. The signals are
described in Table 91.

The Comparator need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

Table 90. Scan Signals for the Oscillators(1)(2)(3)

Enable Signal Scanned Clock Line Clock Option
Scanned Clock Line
when not Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal

External Ceramic
Resonator

0

RCOSCEN RCCK External RC 1

OSC32EN OSC32CK Low Freq. External Crystal 0

TOSKON TOSCK 32 kHz Timer Oscillator 0

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

T
o

S
ys

te
m

 L
og

ic

FF10

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

F
ro

m
 D

ig
ita

l L
og

ic

XTAL1/TOSC1 XTAL2/TOSC2

Oscillator

ENABLE OUTPUT
235
2466T–AVR–07/10

ATmega16(L)
Figure 125. Memory Sections(1)

Note: 1. The parameters in the figure above are given in Table 100 on page 257.

Boot Loader Lock
Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU

• To protect only the Boot Loader Flash section from a software update by the MCU

• To protect only the Application Flash section from a software update by the MCU

• Allow software update in the entire Flash

See Table 96 and Table 97 for further details. The Boot Lock bits can be set in software and in
Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command only.
The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash mem-
ory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 3) does not
control reading nor writing by LPM/SPM, if it is attempted.

$0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

$0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

$0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

$0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader
248
2466T–AVR–07/10

ATmega16(L)
Performing Page
Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer must
be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary
Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR. The con-
tent of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a page write operation or by writing the RWWSRE bit in
SPMCR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer.
Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

Performing a Page
Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written zero
during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM
Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCR is cleared. This means that the interrupt can be used instead of polling
the SPMCR Register in software. When using the SPM interrupt, the Interrupt Vectors should be
moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 45.

Consideration while
Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

Prevent Reading the
RWW Section during
Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the Self-Programming operation. The RWWSB in the SPMCR will be set as long as the RWW
section is busy. During self-programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 45, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 256 for an example.
253
2466T–AVR–07/10

ATmega16(L)
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC Reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCR Register and thus the Flash from unintentional writes.

Programming Time for
Flash when using SPM

The Calibrated RC Oscillator is used to time Flash accesses. Table 99 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 99. SPM Programming Time.

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page
Write, and write Lock bits by SPM)

3.7 ms 4.5 ms
255
2466T–AVR–07/10

ATmega16(L)
Programming the
Flash

The Flash is organized in pages, see Table 107 on page 262. When programming the Flash, the
program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address Low byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address Low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data Low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 129 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 128 on page 267. Note that if less than
8 bits are required to address words in the page (pagesize < 256), the most significant bit(s) in
the address Low byte are used to address the page when performing a page write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address High byte.

H. Program Page

1. Set BS1 = “0”

2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

3. Wait until RDY/BSY goes high. (See Figure 129 for signal waveforms)
266
2466T–AVR–07/10

ATmega16(L)
9. Added Table 73, “TWI Bit Rate Prescaler,” on page 182 to describe the TWPS bits in
the “TWI Status Register – TWSR” on page 181.

10. Added section “Default Clock Source” on page 25.

11. Added note about frequency variation when using an external clock. Note added in
“External Clock” on page 31. An extra row and a note added in Table 118 on page 293.

12. Various minor TWI corrections.

13. Added “Power Consumption” data in “Features” on page 1.

14. Added section “EEPROM Write During Power-down Sleep Mode” on page 22.

15. Added note about Differential Mode with Auto Triggering in “Prescaling and Conver-
sion Timing” on page 207.

16. Added updated “Packaging Information” on page 337.

Rev. 2466E-10/02 1. Updated “DC Characteristics” on page 291.

Rev. 2466D-09/02 1. Changed all Flash write/erase cycles from 1,000 to 10,000.

2. Updated the following tables: Table 4 on page 26, Table 15 on page 38, Table 42 on
page 85, Table 45 on page 111, Table 46 on page 111, Table 59 on page 143, Table 67
on page 167, Table 90 on page 235, Table 102 on page 258, “DC Characteristics” on
page 291, Table 119 on page 293, Table 121 on page 295, and Table 122 on page 297.

3. Updated “Errata” on page 340.

Rev. 2466C-03/02 1. Updated typical EEPROM programming time, Table 1 on page 20.

2. Updated typical start-up time in the following tables:

Table 3 on page 25, Table 5 on page 27, Table 6 on page 28, Table 8 on page 29, Table 9
on page 29, and Table 10 on page 29.

3. Updated Table 17 on page 43 with typical WDT Time-out.

4. Added Some Preliminary Test Limits and Characterization Data.

Removed some of the TBD's in the following tables and pages:

Table 15 on page 38, Table 16 on page 42, Table 116 on page 272 (table removed in docu-
ment review #D), “Electrical Characteristics” on page 291, Table 119 on page 293, Table
121 on page 295, and Table 122 on page 297.

5. Updated TWI Chapter.

Added the note at the end of the “Bit Rate Generator Unit” on page 178.

6. Corrected description of ADSC bit in “ADC Control and Status Register A – ADCSRA”
on page 219.

7. Improved description on how to do a polarity check of the ADC doff results in “ADC
Conversion Result” on page 216.
348
2466T–AVR–07/10

