

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C620(A) and PIC16CR620A address 512 x 14 on-chip program memory. The PIC16C621(A) addresses 1K x 14 program memory. The PIC16C622(A) addresses 2K x 14 program memory. All program memory is internal.

The PIC16C62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C62X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C62X simple yet efficient. In addition, the learning curve is reduced significantly.

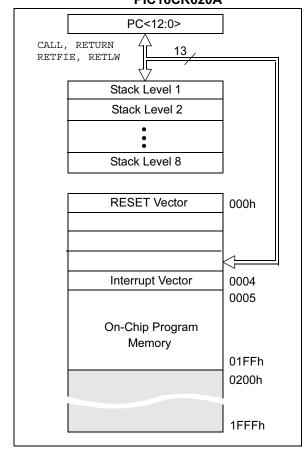
The PIC16C62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16C620/PIC16C620 PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

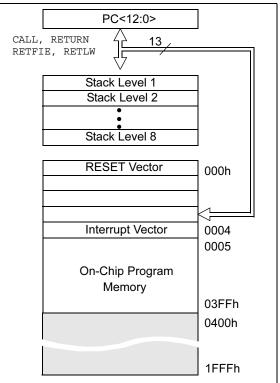
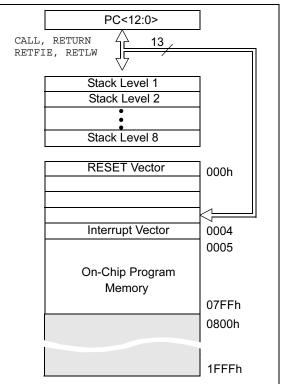
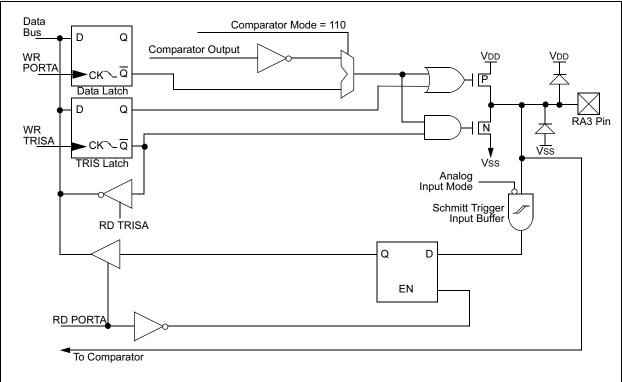
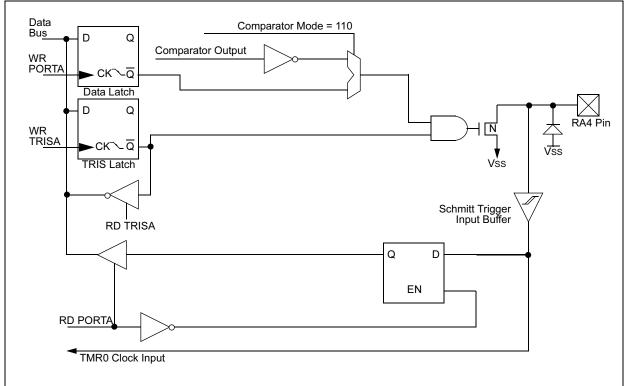




FIGURE 4-3:


PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

			(,				
	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT : Co	omparator 2	output					
	1 = C2 VIN	+ > C2 VIN-						
	0 = C2 VIN	+ < C2 VIN-						
bit 6	C10UT: Co	omparator 1	output					
	1 = C1 VIN	+ > C1 VIN-						
	0 = C1 VIN	+ < C1 VIN-						
bit 5-4	Unimplem	ented: Read	d as '0'					
bit 3	CIS: Comp	arator Input	Switch					
	When CM<	<2:0>: = 001	:					
	1 = C1 VIN-	- connects to	o RA3					
	0 = C1 VIN	- connects to	o RA0					
	When CM<	<2:0> = 010:						
		 connects to 						
		I- connects t						
	0 = C1 VIN- connects to RA0							
	C2 VIN	I- connects t	0 RA1					
bit 2-0	CM<2:0>:	Comparator	mode.					
	Legend:	l egend.						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register				
	(C1OUT or C2OUT) should occur when a				
	read operation is being executed (start of				
	the Q2 cycle), then the CMIF (PIR1<6>)				
	interrupt flag may not get set.				

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

7.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will

Vdd ∆Vt = 0.6V RIC Rs < 10K Δικ **I**LEAKAGE CPIN VT = 0.6V ±500 nA 5 pF Vss Input Capacitance Legend CPIN = Threshold Voltage Vт = Leakage Current at the pin due to various junctions ILEAKAGE = = Interconnect Resistance RIC Rs = Source Impedance Analog Voltage VA =

FIGURE 7-4: ANALOG INPUT MODEL

wake up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

7.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the comparator module to be in the comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

7.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A maximum source impedance of $10 \ k\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

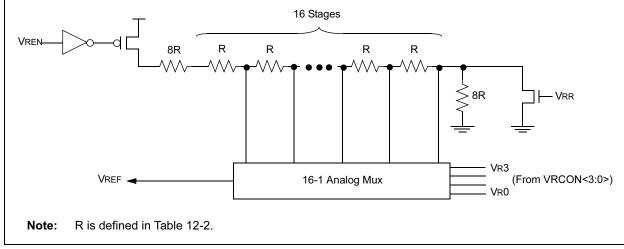
8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD


The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN	VROE	Vrr	—	VR3	VR2	VR1	VR0			
	bit 7							bit 0			
bit 7											
		 VREF circuit powered on VREF circuit powered down, no IDD drain 									
bit 6		F Output En									
		 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin 									
bit 5		Range sele		2 pm							
bit o	1 = Low Ra										
	0 = High R	ange									
bit 4	Unimplem	ented: Rea	d as '0'								
bit 3-0				VR [3:0] ≤ 1	5						
			(VR<3:0>/ 2 1/4 * Voo +	4) * VDD (VR<3:0>/ 3	2) * \/חח						
		- 0. VILLI -		(111-0.0-7-0	2) 100						
	Legend:										
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown			
8-1:	VOLTAGE	REFERE		K DIAGRA	M						
			16 \$	Stages							
\sim		_			_	_					
$-\!$	에드 8R	R	R	R	R						
		<u>\</u>				• •					

REGISTER 8-1: VRCON REGISTER(ADDRESS 9Fh)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x0F	;	RA3-RA0 are
MOVWF	TRISA	;	inputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank O
CALL	DELAY10	;	10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Note: - = Unimplemented, read as "0"

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	<u>uuuu</u> uuuu	<u></u>
INDF	00h		_	_
TMR0	01h	xxxx xxxx	սսսս սսսս	นนนน นนนน
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	<u>uuuu</u> uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

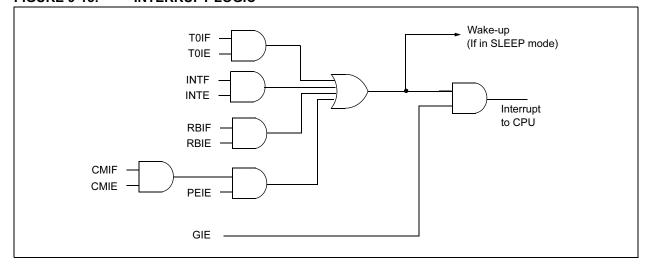

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

PIC16C62X

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear		
Syntax:	[label]BCF f,b	Syntax:	[label]BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0		
Status Affected:	None	Status Affected:	None		
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff		
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the		
Words:	1		next instruction is skipped. If bit 'b' is '0', then the next instruc-		
Cycles:	1		tion fetched during the current		
Example	BCF FLAG_REG, 7		instruction execution is discarded,		
	Before Instruction FLAG_REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.		
	After Instruction	Words:	1		
	FLAG_REG = 0x47	Cycles:	1(2)		
		Example	here btfsc FLAG,1 false goto process co		
BSF	Bit Set f		TRUE DE		
Syntax:	[<i>label</i>] BSF f,b		•		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE		
Operation:	$1 \rightarrow (f \le b >)$		After Instruction if FLAG<1> = 0.		
Status Affected:	None		PC = address TRUE		
Encoding:	01 01bb bfff ffff		if FLAG<1>=1, PC = address FALSE		
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE		
Words:	1				
Cycles:	1				
Example	BSF FLAG_REG, 7				

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

PIC16C62X

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$					
Status Affected:	None					
Encoding:	00 0000 0000 1001					
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.					
Words:	1					
Cycles:	2					
Example	RETFIE					
	After Interrupt PC = TOS GIE = 1					

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE;W contains table
TABLE	;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Encoding:	00 0000 0000 1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETURN
	After Interrupt PC = TOS

SWAPF	Swap Ni	bbles in	f				
Syntax:	[label] SWAPF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
Status Affected:	None						
Encoding:	00	1110	dfff	ffff			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Example	SWAPF	REG,	0				
	Before Instruction						
		REG1	= (DxA5			
	After Inst	ruction					
		REG1 W		0xA5 0x5A			

TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	$(W) \rightarrow TRIS$ register f;				
Status Affected:	None				
Encoding:	00 0000 0110 Offf				
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.				

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i> XORLW k]
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Encoding:	11 1010 kkkk kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	XORLW 0xAF
	Before Instruction
	W = 0xB5
	After Instruction
	W = 0x1A
XORWF	Exclusive OR W with f
Syntax:	
	[<i>label</i>] XORWF f,d
Operands:	$ \begin{array}{l} \left[\begin{array}{c} \textit{label} \end{array} \right] \text{XORWF} f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \end{array} $
-	$0 \le f \le 127$
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	$0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest)
Operands: Operation: Status Affected:	$0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG & = 0xAF \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{llllllllllllllllllllllllllllllllllll$

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

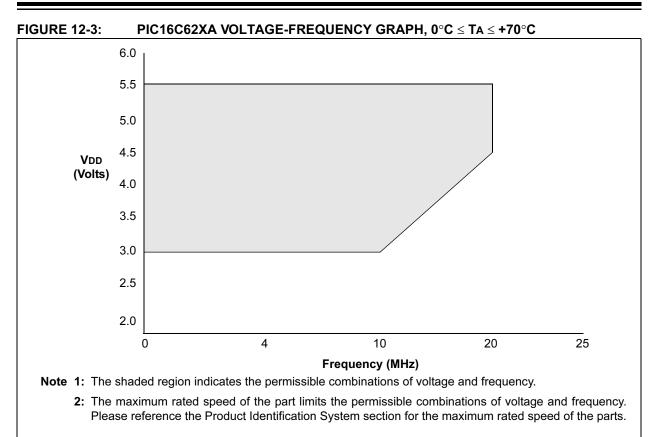
MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

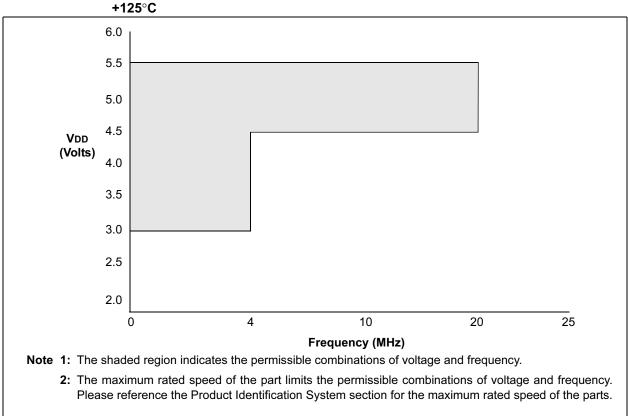
MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator


The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.


11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

FIGURE 12-4: PIC16C62XA VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le Ta \le 0^{\circ}C$, $+70^{\circ}C \le Ta \le +125^{\circ}C$

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C62X/C62XA/CR62XA Standard Operating C Operating temperature					C \leq TA \leq +70°C for commercial and			
PIC16L0	C62X/L	C62XA/LCR62XA	$\begin{array}{ c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array}$					
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	Vih	Input High Voltage						
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise	
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD			
D042		MCLR RA4/T0CKI	0.8 VDD	_	Vdd	V		
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	-	Vdd	V	(Note 1)	
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss ≤ VPIN ≤ VDD, pin at hi-impedance	
D060		PORTA	_	_	±0.5	μA	$Vss \leq VPIN \leq VDD$, pin at hi-impedance	
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq VPIN \leq VDD$	
D063		OSC1, MCLR	_	_	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	lı∟	Input Leakage Current ^(2, 3)						
		I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D060		PORTA	-	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance	
D061		RA4/T0CKI	-	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	Vol	Output Low Voltage						
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C	
			—	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C	
D083		OSC2/CLKOUT (RC only)	—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C	
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C	

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V
			—	—	5.0	μA	VDD = 4.5V*
			—	—	9.0	μA	VDD = 5.5V
		(5)	—	—	15	μA	VDD = 5.5V Extended
D022	Δ IWDT	WDT Current ⁽⁵⁾	—	6.0	10	μA	VDD = 4.0V
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$
D022A D023	Δ IBOR Δ ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V
		Comparator ⁽⁵⁾					
D023A	$\Delta IVREF$	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA	
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0	-	4	MHz	All temperatures
		XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0	_	4 20	MHz MHz	All temperatures All temperatures
		The Oscillator Operating Frequency	U		20	IVI⊓Z	Air temperatures

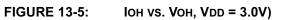
These parameters are characterized but not tested.

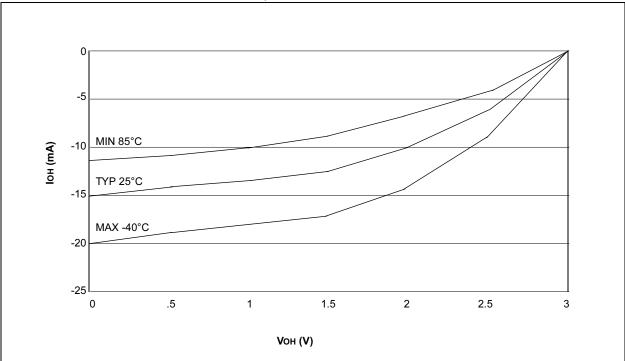
† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

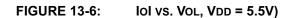
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

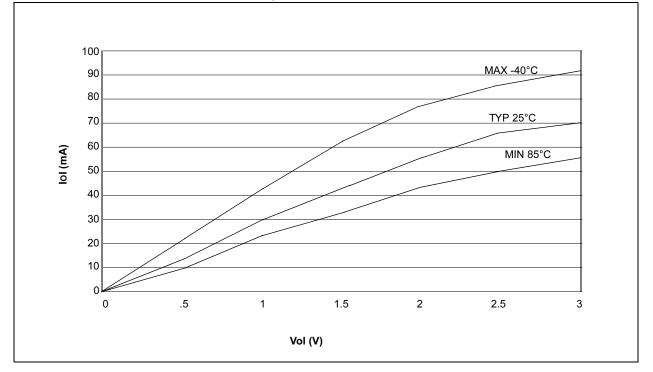
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP

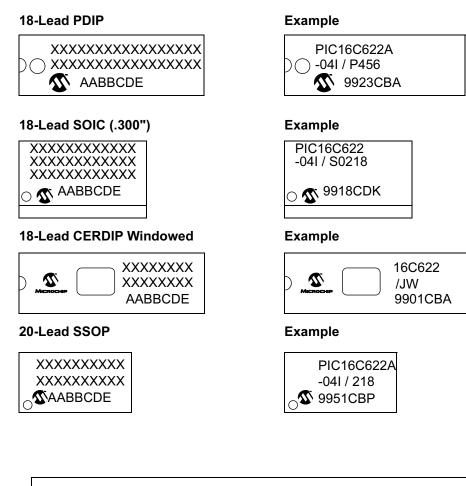

mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.


5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


6: Commercial temperature range only.


7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

PIC16C62X



14.1 Package Marking Information

Legenc	I: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	
BSF Instruction	
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	
_	

D

Data Memory Organization14
DC Characteristics
PIC16C717/770/771 88, 89, 90, 91, 96, 97, 98
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet
Development Support75
E
Errata
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

I	
I/O Ports	
I/O Programming Considerations	
ID Locations	
INCF Instruction INCFSZ Instruction	
INCESZ Instruction In-Circuit Serial Programming	
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	63
ADDWF	63
ANDLW	
ANDWF	
BCF	
BSF BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	66
CLRWDT	66
COMF	
DECF	
DECFSZ	
GOTO	
INCFINCFSZ	
INCI SZ	
IORWF	
MOVF	69
MOVLW	68
MOVWF	69
NOP	
OPTION	
RETFIE	
RETLW RETURN	
RLF	
RRF	
SLEEP	
SUBLW	72
SUBWF	72
SWAPF	
TRIS	
XORLW	
XORWF Instruction Set Summary	
INT Interrupt	
INTCON Register	
Interrupts	
IORLW Instruction	
IORWF Instruction	68
Μ	
MOVF Instruction	69
MOVLW Instruction	
MOVWF Instruction	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	77
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	11
MPLAB ICE 4000 High Performance Universal In-Circuit Emulator	77
MPLAB Integrated Development Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	