

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620-20-so

PIC16C62X

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	y EPROM Program 512 Memory (x14 words)		512	512	1K	1K	2K	2K
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

- 2: For ROM parts, operation from 2.0V 2.5V will require the PIC16LCR62XA parts.
- **3:** For OTP parts, operation from 2.5V 3.0V will require the PIC16LC62X part.
- 4: For OTP parts, operation from 2.7V 3.0V will require the PIC16LC62XA part.

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART® and PRO MATE® programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-ProductionSM (SQTPSM) Devices

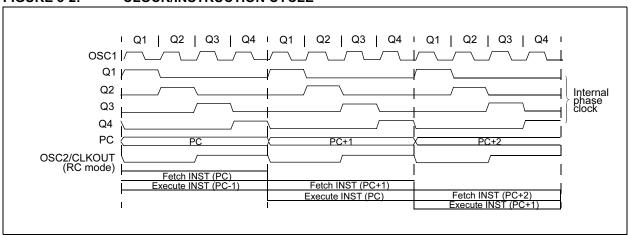
Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

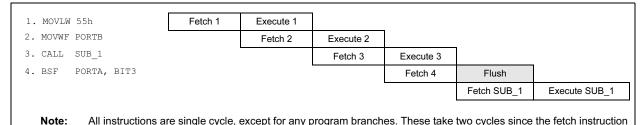
PIC16C62X

NOTES:

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining


An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

File Address			File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h			87h			
08h			88h			
09h			89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	PIR1	PIE1	8Ch			
0Dh			8Dh			
0Eh		PCON	8Eh			
0Fh			8Fh			
10h			90h			
11h			91h			
12h			92h			
13h			93h			
14h			94h			
15h			95h			
16h			96h			
17h			97h			
18h			98h			
19h			99h			
1Ah			9Ah			
1Bh			9Bh			
1Ch			9Ch			
1Dh			9Dh			
1Eh			9Eh			
1Fh	CMCON	VRCON	9Fh			
20h	General Purpose		A0h			
6Fh	Register					
70h						
7Fh			FFh			
7111	Bank 0	Bank 1				
Unimplemented data memory locations, read as '0'.						
Note 1: Not a physical register.						

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16C622

File Address	3		File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR	84h					
05h	PORTA	TRISA	85h					
06h	PORTB	TRISB	86h					
07h			87h					
08h			88h					
09h			89h					
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON	8Bh					
0Ch	PIR1	PIE1	8Ch					
0Dh			8Dh					
0Eh		PCON	8Eh					
0Fh			8Fh					
10h			90h					
11h			91h					
12h			92h					
13h			93h					
14h			94h					
15h			95h					
16h			96h					
17h			97h					
18h			98h					
19h			99h					
1Ah			9Ah					
1Bh			9Bh					
1Ch			9Ch					
1Dh			9Dh					
1Eh			9Eh					
1Fh	CMCON	VRCON	9Fh					
20h			A0h					
	General	General	7.011					
	Purpose Register	Purpose Register						
	register	rtegister	BFh					
			C0h					
[_					
7Fh			FFh					
7 - 11 - 1	Bank 0	Bank 1	_ ' ' ''					
Unimplemented data memory locations, read as '0'.								
Note 1:	Not a physical re	egister.						

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)

L 14 7	1	l	l	1	l.		1.11.0
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x

Note:

bit 7

bit 7

GIE: Global Interrupt Enable bit

1 = Enables all un-masked interrupts
0 = Disables all interrupts

bit 6

PEIE: Peripheral Interrupt Enable bit

1 = Enables all un-masked peripheral interrupts0 = Disables all peripheral interrupts

bit 5 **T0IE**: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt
 INTE: RB0/INT External Interrupt Enable bit

bit 4 INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

bit 3 **RBIE**: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

bit 2 **T0IF**: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

bit 1 INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = When at least one of the RB<7:4> pins changed state (must be cleared in software)

0 = None of the RB<7:4> pins have changed state

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function			
RA0/AN0	bit0	ST	Input/output or comparator input			
RA1/AN1	bit1	ST	Input/output or comparator input			
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output			
RA3/AN3	bit3	ST	Input/output or comparator input/output			
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.			

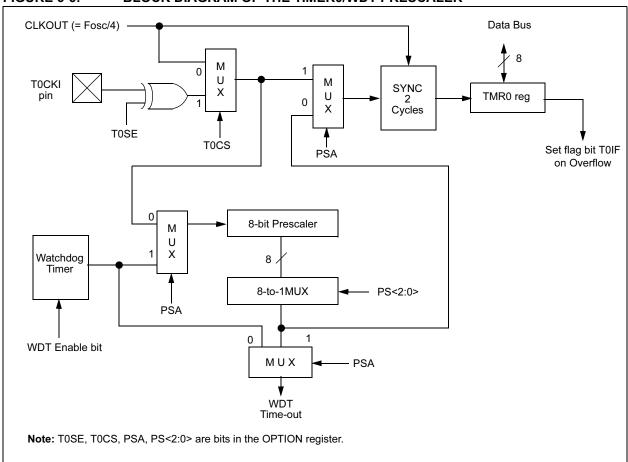
Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	1	-	_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by PORTA.


6.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

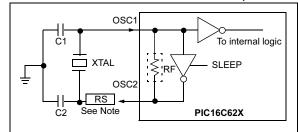
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16C62X devices can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator


HS High Speed Crystal/Resonator

RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION
(OR CERAMIC
RESONATOR) (HS, XT OR
LP OSC
CONFIGURATION)

See Table 9-1 and Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

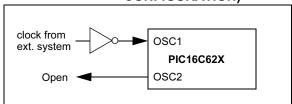


TABLE 9-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS

R	anges Chara		
Mode	Freq	OSC1(C1)	OS62(C2)
XT	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF
HS	8.0 MHz 16.0 MHz	10-22 pF	10 - 68 pF 10 - 22 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These waltes are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
XT	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15-30 pF	15 - 30 pF
	10 MHz	15-30 pF	15 - 30 pF
	20 MHz	15-30 pF	15 - 30 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time.
These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	CMIF	_	_	_	_	_	_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 9-3 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-3:

- · Stores the W register
- · Stores the STATUS register in Bank 0
- · Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-3: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy $\ensuremath{\mathtt{W}}$ to temp register, ;could be in either bank
SWAPF	STATUS,W	;swap status to be saved into $\ensuremath{\mathtt{W}}$
BCF	STATUS, RPO	<pre>;change to bank 0 regardless ;of current bank</pre>
MOVWF	STATUS_TEMP	;save status to bank 0 ;register
:		
:	(ISR)	
:		
SWAPF	STATUS_TEMP, W	<pre>;swap STATUS_TEMP register ;into W, sets bank to origi- nal ;state</pre>
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Encoding:	01 11bb bfff ffff
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CO TRUE • DE •
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE

CALL	Call Subroutine							
Syntax:	[label] CALL k							
Operands:	$0 \leq k \leq 2047$							
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>							
Status Affected:	None							
Encoding:	10 Okkk kkkk kkkk							
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.							
Words:	1							
Cycles:	2							
Example	HERE CALL THER E							
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1							

CLRF	Clear f					
Syntax:	[label] (CLRF f				
Operands:	$0 \le f \le 12$	27				
Operation:	$00h \rightarrow (f)$ $1 \rightarrow Z$)				
Status Affected:	Z					
Encoding:	00	0001	1fff	ffff		
Description:	The contents of register 'f' are cleared and the Z bit is set.					
Words:	1					
Cycles:	1					
Example	CLRF	FLAG_F	REG			
	After Inst	FLAG_RE	EG =	0x5A 0x00		
		Z	=	1		

DECFSZ	Decrement f, Skip if 0							
Syntax:	[label] DECFSZ f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0							
Status Affected:	None							
Encoding:	00 1011 dfff ffff							
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.							
Words:	1							
Cycles:	1(2)							
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •							
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE+1							

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(f) + 1 \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	00 1010 dfff ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example	INCF CNT, 1					
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1					

Syntax: [label] GOTO k Operands: $0 \le k \le 2047$ Operation: $k \rightarrow PC<10:0>$ $\mathsf{PCLATH} \mathord{<} 4:3 \mathord{>} \to \mathsf{PC} \mathord{<} 12:11 \mathord{>}$ Status Affected: None Encoding: 10 1kkk kkkk kkkk GOTO is an unconditional branch. Description: The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a twocycle instruction. Words: 1 Cycles: 2 Example GOTO THERE After Instruction

PC =

Address THERE

Unconditional Branch

GOTO

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	8.5V
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	300 mA
Maximum Current into VDD pin	250 mA
Input Clamp Current, lik (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, Ιοκ (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-	VOH) x IOH} + Σ (VOI x IOL).

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended)

PIC16C62X Operating temperature						ature -4	ditions (unless otherwise stated) $40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial and $40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended		
PIC16L0	C62X		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{Ta} \leq +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \leq \text{Ta} \leq +125^{\circ}\text{C}$ for extended Operating voltage VDD range is the PIC16C62X range.						
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	VDD	Supply Voltage	3.0	_	6.0	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5		
D001	VDD	Supply Voltage	2.5	_	6.0	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5		
D002	VDR	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP mode		
D002	VDR	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss	_	V	See section on Power-on Reset for details		
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss	_	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_		V/ms	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	_	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.3	V	BOREN configuration bit is cleared		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.3	V	BOREN configuration bit is cleared		
D010	IDD	Supply Current ⁽²⁾	_	1.8	3.3	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*		
			_	35	70	μΑ	Fosc = 32 kHz, VDD = 4.0V, WDT disabled, LP mode		
			_	9.0	20	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled, HS mode		
D010	IDD	Supply Current ⁽²⁾	_	1.4	2.5	mA	Fosc = 2.0 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)		
			_	26	53	μΑ	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode		
D020	IPD	Power-down Current ⁽³⁾		1.0	2.5 15	μ Α μ Α	VDD=4.0V, WDT disabled (125°C)		
D020	IPD	Power-down Current ⁽³⁾	_	0.7	2	μА	VDD=3.0V, WDT disabled		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C	62XA		Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial and						
PIC16LC62XA						ng Con ature -4	10° C ≤ TA ≤ +125°C for extended ditions (unless otherwise stated) 10° C ≤ TA ≤ +85°C for industrial and 0° C ≤ TA ≤ +70°C for commercial and 0° C ≤ TA ≤ +125°C for extended		
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D010	IDD	Supply Current ^(2, 4)		1.2 0.4	2.0	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)*		
			— -	1.0	2.0 6.0	mA mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS mode		
			_ _	4.0 35	7.0 70	mA μA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode		
D010	IDD	Supply Current ⁽²⁾	_ _	1.2	2.0	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4)		
			_	35	70	μА	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode		
D020	IPD	Power-down Current ⁽³⁾		_ _ _ _	2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.		
D020	IPD	Power-down Current ⁽³⁾	_ _ _ _	_ _ _ _	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in Active Operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 - 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
 - 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 6: Commercial temperature range only.

PIC16C62X

PIC16CR62XA-04 Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended							
PIC16LCR62XA-04	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended						
Param. Sym Characteristic No.	Min Typ† Max Units Conditions						

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in Active Operation mode are:
 - $\underline{\mathsf{OSC1}}$ = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
 - 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16CR62XA-04 PIC16CR62XA-20				Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial and -40°C ≤ TA ≤ +125°C for extended						
PIC16LCR62XA-04				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended						
Param. No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions			
D020	IPD	Power-down Current ⁽³⁾	_ _ _ _	200 0.400 0.600 5.0	950 1.8 2.2 9.0	nA μA μA μA	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.			
D020	IPD	Power-down Current ⁽³⁾	_ _ _ _	200 200 0.600 5.0	850 950 2.2 9.0	nA nA μA μA	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended			
D022 D022A D023	ΔIWDT ΔIBOR ΔICOMP ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾	_ _ _ _	6.0 75 30 80	10 12 125 60	μΑ μΑ μΑ μΑ	VDD=4.0V (125°C) BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V			
D022 D022A D023	ΔIWDT ΔIBOR ΔICOMP ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾	_ _ _	6.0 75 30 80	10 12 125 60	μΑ μΑ μΑ μΑ μΑ	$V_{DD}=4.0V$ $(125^{\circ}C)$ BOD enabled, $V_{DD}=5.0V$ $V_{DD}=4.0V$ $V_{DD}=4.0V$			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	_ _ _	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	_ _ _ _	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in $k\Omega$.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C62X/C62XA/CR62XA				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{Ta} \le +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for extended						
PIC16L0	C62X/L	C62XA/LCR62XA	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended							
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Vol	Output Low Voltage								
D080		I/O ports	_	_	0.6	V	IoL = 8.5 mA, VDD = 4.5V, -40° to +85°C			
			_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C			
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C			
			_	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C			
	Vон	Output High Voltage ⁽³⁾								
D090		I/O ports (Except RA4)	VDD-0.7	_	_	V	Iон = -3.0 mA, VDD = 4.5V, -40° to +85°С			
			VDD-0.7	_	_	V	Iон = -2.5 mA, VDD = 4.5V, +125°С			
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	_	V	Iон = -1.3 mA, VDD = 4.5V, -40° to +85°С			
			VDD-0.7	_	_	V	IOH = -1.0 mA, VDD = 4.5V, +125°С			
	Voн	Output High Voltage ⁽³⁾								
D090		I/O ports (Except RA4)	VDD-0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C			
			VDD-0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, +125°С			
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	_	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C			
*D150	Von	Open-Drain High Voltage	VDD-0.7	_	_	V	IOH = -1.0 mA, VDD = 4.5V, +125°C RA4 pin PIC16C62X, PIC16LC62X			
D150	VOD	Open-טרומות nigh voltage			10* 8.5*	V	RA4 pin PiC16C62X, PiC16LC62X RA4 pin PiC16C62XA, PiC16LC62XA, PiC16CR62XA, PiC16LCR62XA			
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA			
		Capacitive Loading Specs on Output Pins								
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF				
		Capacitive Loading Specs on Output Pins								
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF				

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

TABLE 12-1: COMPARATOR SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

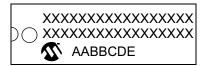
Characteristics	Sym	Min	Тур	Max	Units	Comments
Input offset voltage			± 5.0	± 10	mV	
Input common mode voltage		0		VDD - 1.5	V	
CMRR		+55*			δβ	
Response Time ⁽¹⁾			150*	400* 600*	ns ns	PIC16C62X(A) PIC16LC62X
Comparator mode change to output valid				10*	μs	

^{*} These parameters are characterized but not tested.

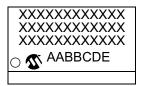
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 12-2: VOLTAGE REFERENCE SPECIFICATIONS

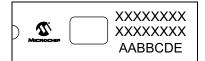
Operating Conditions:VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.


Characteristics	Sym	Min	Тур	Max	Units	Comments
Resolution			VDD/24 VDD/32		LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Absolute Accuracy				<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Unit Resistor Value (R)			2K*		Ω	Figure 8-1
Settling Time ⁽¹⁾				10*	μS	

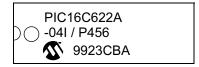
^{*} These parameters are characterized but not tested.


Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

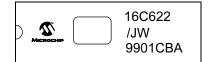
14.1 Package Marking Information

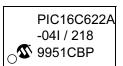

18-Lead PDIP

18-Lead SOIC (.300")


18-Lead CERDIP Windowed

20-Lead SSOP


Example


Example

Example

Example

Legend: XX...X Customer specific information*

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

lote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.