

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

NOTES:

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

E PE Global Internables all un isables all in Peripheral nables all p TMR0 Ove nables the T isables the	N-0 R/W-0 EIE TOIE rrupt Enable bit n-masked interrunts Interrupts Interrupt Enable n-masked periphoral interrunt peripheral interrunt erflow Interrupt End TMR0 interrupt	e bit heral interrupt pts	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF bit 0	
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	s			bit 0	
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S				
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S				
sables all in Peripheral nables all un sables all p TMR0 Ove nables the T isables the	nterrupts Interrupt Enable n-masked periph peripheral interru erflow Interrupt Er TMR0 interrupt	e bit heral interrupt pts	s				
nables all u isables all p TMR0 Ove nables the isables the	n-masked periph peripheral interru rflow Interrupt Er TMR0 interrupt	neral interrupt pts	S				
sables all p TMR0 Ove nables the sables the	peripheral interru erflow Interrupt Er TMR0 interrupt	pts	S				
TMR0 Ove nables the sables the	rflow Interrupt Er TMR0 interrupt						
nables the isables the	TMR0 interrupt	nable bit					
sables the							
	I MRU interrupt						
	External Interrupt						
	RB0/INT externa RB0/INT externa						
	hange Interrupt E						
	RB port change i						
	RB port change	•					
T0IF: TMR0 Overflow Interrupt Flag bit							
MR0 registe	er has overflowed	d (must be cle	eared in soft	ware)			
MR0 registe	er did not overflov	W					
RB0/INT E	xternal Interrupt	Flag bit					
 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur 							
RB Port Cl	hange Interrupt F	Flag bit					
'hen at leas		•	-	(must be cle	ared in softw	ware)	
	ne RB0/INT ne RB0/INT RB Port C hen at leas	ne RB0/INT external interrune RB0/INT external interrun RB Port Change Interrupt I hen at least one of the RB<	ne RB0/INT external interrupt did not occ RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins cha one of the RB<7:4> pins have changed s	ne RB0/INT external interrupt occurred (must be clea ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state one of the RB<7:4> pins have changed state	ne RB0/INT external interrupt occurred (must be cleared in softwa ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cle	ne RB0/INT external interrupt occurred (must be cleared in software) ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cleared in softwore) one of the RB<7:4> pins have changed state	

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)
---------------	--------------------------------------

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.4 PIE1 Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)							
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
		CMIE	_			—	_	—
	bit 7							bit 0
bit 7	Unimpleme	nted: Read	d as '0'					
bit 6	CMIE : Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt							
bit 5-0	Unimpleme	nted: Read	d as '0'					
	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown							

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

ER 4-5:	PIRT REGI	SIER (AL	DRESS 0	СН)					
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
		CMIF		—	_				
	bit 7							bit 0	
bit 7	Unimpleme	ented: Rea	d as '0'						
bit 6	CMIF: Comparator Interrupt Flag bit								
	1 = Comparator input has changed								
	0 = Comparator input has not changed								
bit 5-0	Unimplemented: Read as '0'								
	Legend:								
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

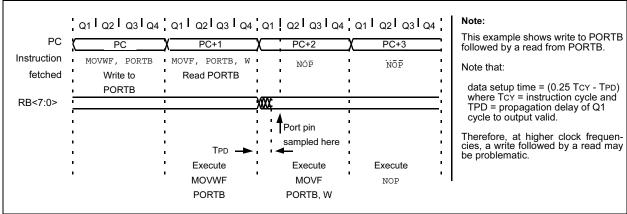
5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}\,,\ {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

	= =
; Initial PORT settings:	PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
; PORTB<7:6> have external ; connected to other circu	
;	
;	PORT latch PORT pins
;	
	-
BCF PORTB, 7	; 01pp pppp 11pp pppp
BCF PORTB, 6	; 10pp pppp 11pp pppp
BSF STATUS, RPO	;
BCF TRISB, 7	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	
; Note that the user may h	nave expected the pin
; values to be 00pp pppp.	The 2nd BCF caused
; RB7 to be latched as the	e pin value (High).

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION

7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR1<6>)
	interrupt flag may not get set.

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

7.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will

Vdd ∆Vt = 0.6V RIC Rs < 10K Δικ **I**LEAKAGE CPIN VT = 0.6V ±500 nA 5 pF Vss Input Capacitance Legend CPIN = Threshold Voltage Vт = Leakage Current at the pin due to various junctions ILEAKAGE = = Interconnect Resistance RIC Rs = Source Impedance Analog Voltage VA =

FIGURE 7-4: ANALOG INPUT MODEL

wake up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

7.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the comparator module to be in the comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

7.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A maximum source impedance of $10 \ k\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

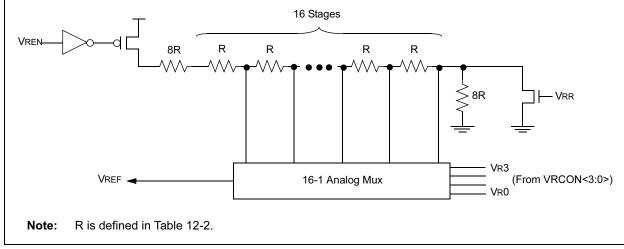
8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD


The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	VREN	VROE	Vrr	—	VR3	VR2	VR1	VR0				
	bit 7							bit 0				
bit 7		Enable ircuit powere	od on									
		-	ed down, no	IDD drain								
bit 6		F Output En										
	1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin											
bit 5				2 pm								
bit o	VRR: VREF Range selection 1 = Low Range											
	0 = High R	ange										
bit 4	Unimplem	ented: Rea	d as '0'									
bit 3-0				VR [3:0] ≤ 1	5							
			(VR<3:0>/ 2 1/4 * Voo +	4) * VDD (VR<3:0>/ 3	2) * \/חח							
		- 0. VILLI -		(111-0.0-7-0	2) 100							
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'				
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown				
8-1:	VOLTAGE	REFERE		K DIAGRA	M							
			16 \$	Stages								
\sim		_			_	_						
$-\!$	에드 8R	R	R	R	R							
		<u>\</u>				• •						

REGISTER 8-1: VRCON REGISTER(ADDRESS 9Fh)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-

9.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (<u>PWRT</u> disabled), there will be no time-out at all. Figure 9-8, Figure 9-9 and Figure 9-10 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC16C62X device operating in parallel.

Table 9-4 shows the RESET conditions for some special registers, while Table 9-5 shows the RESET conditions for all the registers.

9.4.6 POWER CONTROL (PCON)/ STATUS REGISTER

The power control/STATUS register, PCON (address 8Eh), has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET, if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Reset	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	Brown-out Reset		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

TABLE 9-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-2 :	STATUS/PCON BITS AND THEIR SIGNIFICANCE
--------------------	---

POR	BOR	то	PD	
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
83h	STATUS				TO	PD				0001 1xxx	000q quuu
8Eh	PCON	_	_		_	_	_	POR	BOR	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

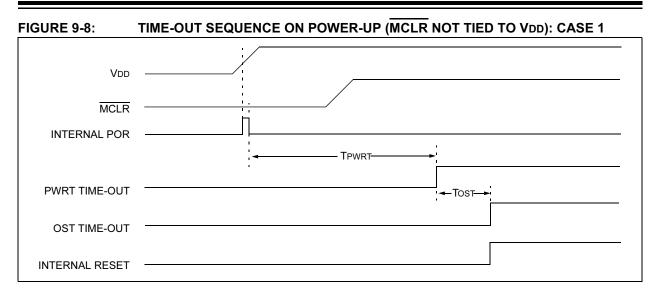


FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

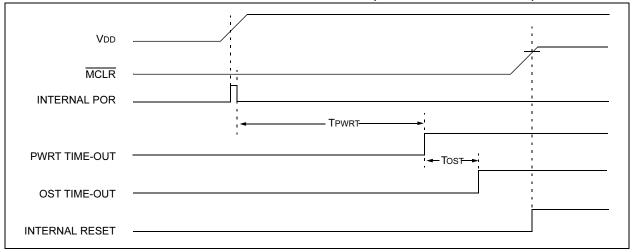
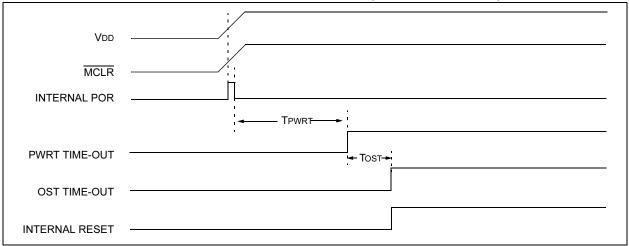



FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

DESCRIPTIONS							
Field	Description						
f	Register file address (0x00 to 0x7F)						
W	Working register (accumulator)						
b	Bit address within an 8-bit file register						
k	Literal field, constant data or label						
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.						
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1						
label	Label name						
TOS	Top of Stack						
PC	Program Counter						
PCLAT H	Program Counter High Latch						
GIE	Global Interrupt Enable bit						
WDT	Watchdog Timer/Counter						
то	Time-out bit						
PD	Power-down bit						
dest	Destination either the W register or the specified regis- ter file location						
[]	Options						
()	Contents						
\rightarrow	Assigned to						
< >	Register bit field						
∈	In the set of						
italics	User defined term (font is courier)						

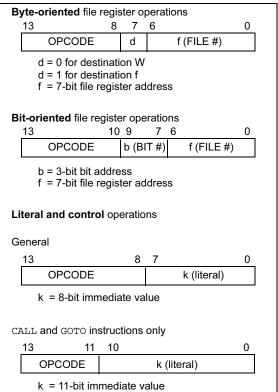
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note:	To maintain upward compatibility with						
	future PICmicro® products, do not use the	÷					
	OPTION and TRIS instructions.						

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear
Syntax:	[label]BCF f,b	Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the
Words:	1		next instruction is skipped. If bit 'b' is '0', then the next instruc-
Cycles:	1		tion fetched during the current
Example	BCF FLAG_REG, 7		instruction execution is discarded,
	Before Instruction FLAG_REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.
	After Instruction	Words:	1
	FLAG_REG = 0x47	Cycles:	1(2)
		Example	here btfsc FLAG,1 false goto process co
BSF	Bit Set f		TRUE DE
Syntax:	[<i>label</i>] BSF f,b		•
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE
Operation:	$1 \rightarrow (f \le b >)$		After Instruction if FLAG<1> = 0.
Status Affected:	None		PC = address TRUE
Encoding:	01 01bb bfff ffff		if FLAG<1>=1, PC = address FALSE
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE
Words:	1		
Cycles:	1		
Example	BSF FLAG_REG, 7		

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
Words: Cycles: Example	instruction. 1 1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		Before InstructionRESULT = $0x13$ W = $0x91$ After InstructionRESULT =RESULT = $0x13$ W = $0x93$ Z =1
	• Before Instruction	MOVLW	Move Literal to W
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1	Operands:	$0 \le k \le 255$
	if CNT= 0, PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if CNT≠ 0,	Status Affected:	None
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Syntax:	[<i>label</i>] IORLW k	Words:	1
Operands:	$0 \le k \le 255$	Cycles:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A
Status Affected:	Z	Example	After Instruction
Encoding:	11 1000 kkkk kkkk		W = 0x5A
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
	Before Instruction W = 0x9A After Instruction W = 0xBE		

W = Z =

0xBF 1

RLF	Rotate L	eft f thro	bugł	n Carı	ry	
Syntax:	[label]	RLF	f,d			
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27				
Operation:	See desc	cription b	elow	v		
Status Affected:	С					
Encoding:	00	1101	df	ff	ffff	
Description:	The cont rotated o the Carry is placed 1, the res register	ne bit to Flag. If ' in the W sult is sto f'.	the l d' is / reg	left thi 0, the ister. back	rough e result If 'd' is	
Words:	1				-	
Cycles:	1					
Example	RLF	REG1,(h			
лапро	Before In	struction REG1 C		1110 0	0110	
		REG1 W C	= = =	1110 1100 1		

RRF	Rotate R	ight f th	nroug	gh Ca	arry			
Syntax:	[label]	RRF f	,d					
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	See description below							
Status Affected:	С							
Encoding:	00	1100	df	ff	ffff			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
		; _▶	Regis	ter f	}			
Words:	1							
Cycles:	1							
Example	RRF		REG 0	61,				
	Before In	structior	ı					
		REG1 C	= =	1110 0	0110			
	After Inst							
	1	REG1 W C	= = =	1110 0111 0				

SLEEP

Syntax:	[label]	SLEEF	D			
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0011		
Description:	The power-down STATUS bit, PD is cleared. Time-out STATUS bit, TO is set. Watch- dog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 9.8 for more details.					
Words:	1					
Cycles:	1					
Example:	SLEEP					

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

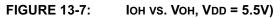
- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

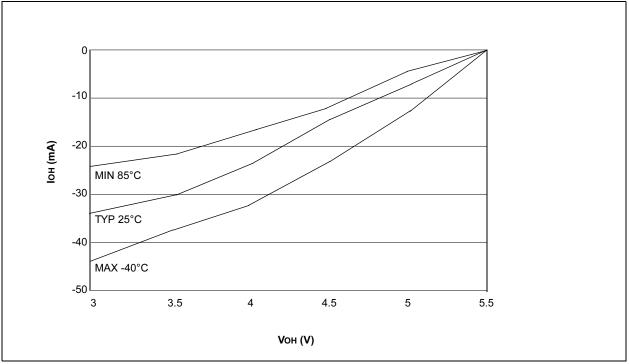
11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

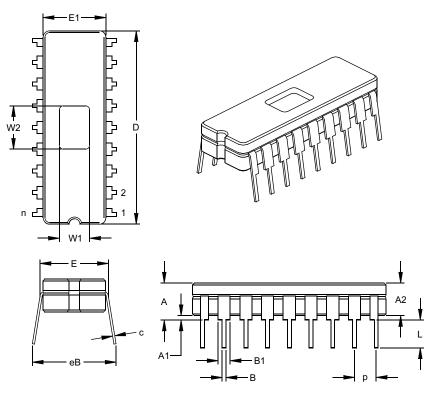
MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.


11.2 MPASM Assembler

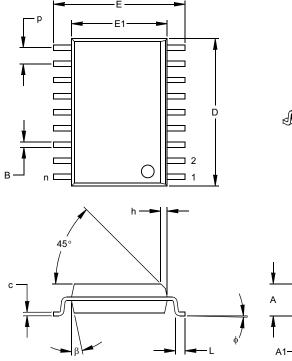

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

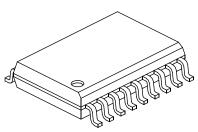
The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

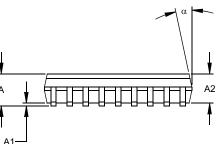
The MPASM assembler features include:


- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

14.0 PACKAGING INFORMATION


18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)




	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units		INCHES*		MILLIMETERS		5
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

DeviceFrequency RangeTemperature RangePackageDevicePIC16C62X: VDD range 3.0V to 6.0V PIC16C62XAT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XAT: VDD range 2.5V to 5.5V PIC16LC620AT: VDD range 2.0V to 5.5V PIC16LC620AT: VDD range 2.0V to 5.5V PIC16LCR620AT: VDD range 2.5V to 5.5V PIC16LCR620AT: VDD range 2.5V to 5.5V PIC16LCR620AT: VDD range 2.5V to 5.5V PIC16LCR6	PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	Ex	amples:
PIC16C62XT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62X: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16CR620A: VDD range 2.5V to 5.5V PIC16CR620A: VDD range 2.5V to 5.5V PIC16CR620A: VDD range 2.5V to 5.5V PIC16LC622A: VDD range 2.5V to 5.5V PIC16LC622A: VDD range 2.5V to 5.5V PIC16LCR620A: VDD range 2.0V to 5.5V	Device			Package	Pattern	a)	PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
$\begin{array}{rcl} 04 & 4 \text{ MHz} (XT \text{ and } \text{RC osc}) \\ 20 & 20 \text{ MHz} (\text{HS osc}) \\ \end{array}$ Temperature Range - = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Device	PIC16C62 PIC16C62 PIC16C62 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16CR PIC16CR PIC16CR	2XT: VDD range 3.0 2XA: VDD range 3.0 2XAT: VDD range 3.6 22XT: VDD range 2.5 32XT: VDD range 2.5 32XA: VDD range 2 52XA: VDD range 2 620A: VDD range 2 620A: VDD range R620A: VDD range	W to 6.0V (Tap OV to 5.5V .0V to 5.5V (Ta 5V to 6.0V .5V to 6.0V (Ta .5V to 5.5V .5V to 5.5V 2.5V to 5.5V	pe and Reel) pe and Reel) ape and Reel) ape and Reel)) b)	PIC16LC622-04I/SO = Industrial temp., SOIC package, 200 kHz, extended VDD limits.
Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Frequency Rang	04 4 MH	Iz (XT and RC osc	;)			
SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Temperature Rar	= -	-40°C to +85°C				
	Package	SO = SS =	SOIC (Gull Wing, SSOP (209 mil)	• •			
Pattern 3-Digit Pattern Code for QTP (blank oth	Pattern	3-Digit Pa	ttern Code for QTF	O (blank otherward)	<i>i</i> ise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.