

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620a-04e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	EPROM Program Memory (x14 words)	512	512	512	1K	1K	2К	2К
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C620(A) and PIC16CR620A address 512 x 14 on-chip program memory. The PIC16C621(A) addresses 1K x 14 program memory. The PIC16C622(A) addresses 2K x 14 program memory. All program memory is internal.

The PIC16C62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C62X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

E PE Global Internables all un isables all in Peripheral nables all p TMR0 Ove nables the T isables the	Interrupt Enable n-masked periph peripheral interru rflow Interrupt En	e bit heral interrupt pts	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF bit 0							
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	s			bit 0							
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S										
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S										
sables all in Peripheral nables all un sables all p TMR0 Ove nables the T isables the	nterrupts Interrupt Enable n-masked periph peripheral interru erflow Interrupt Er TMR0 interrupt	e bit heral interrupt pts	s										
nables all u sables all p TMR0 Ove nables the sables the	n-masked periph peripheral interru rflow Interrupt Er TMR0 interrupt	neral interrupt pts	S										
sables all p TMR0 Ove nables the sables the	peripheral interru erflow Interrupt Er TMR0 interrupt	pts	S										
TMR0 Ove nables the sables the	rflow Interrupt Er TMR0 interrupt												
nables the isables the	TMR0 interrupt	nable bit											
sables the													
	I MRU interrupt		1 = Enables the TMR0 interrupt										
INTE: RB0/INT External Interrupt Enable bit													
1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt													
RBIE : RB Port Change Interrupt Enable bit													
	RB port change i												
	RB port change	•											
TMR0 Ove	rflow Interrupt Fl	ag bit											
1 = TMR0 register has overflowed (must be cleared in software)													
MR0 registe	er did not overflov	W											
INTF: RB0/INT External Interrupt Flag bit													
				red in softwa	are)								
RB Port Cl	hange Interrupt F	Flag bit											
'hen at leas		•	-	(must be cle	ared in softw	ware)							
	ne RB0/INT ne RB0/INT RB Port C hen at leas	ne RB0/INT external interrune RB0/INT external interrun RB Port Change Interrupt I hen at least one of the RB<	ne RB0/INT external interrupt occurred (m ne RB0/INT external interrupt did not occ RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins cha one of the RB<7:4> pins have changed s	ne RB0/INT external interrupt occurred (must be clea ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state one of the RB<7:4> pins have changed state	ne RB0/INT external interrupt occurred (must be cleared in softwa ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cle	ne RB0/INT external interrupt occurred (must be cleared in software) ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cleared in softwore) one of the RB<7:4> pins have changed state							

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)
---------------	--------------------------------------

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.4 PIE1 Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)											
	U-0	U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0										
		CMIE	_			—	_	—				
	bit 7	bit 7 bit 0										
bit 7	Unimpleme	Unimplemented: Read as '0'										
bit 6	CMIE : Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt											
bit 5-0	Unimpleme	nted: Read	d as '0'									
	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown											

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

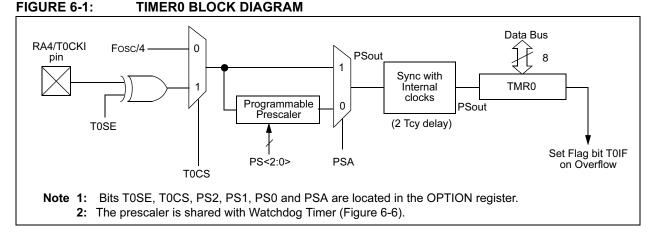
ER 4-5:	PIRT REGI	PIRT REGISTER (ADDRESS UCH)											
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0					
		CMIF		—	_								
	bit 7							bit 0					
bit 7	Unimplemented: Read as '0'												
bit 6	CMIF: Comparator Interrupt Flag bit												
	1 = Comparator input has changed												
	0 = Comparator input has not changed												
bit 5-0	Unimpleme	ented: Rea	d as '0'										
	Legend:												
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'					
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown					

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP, since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

(Program Counter)	(PC-1) PC	(<u>PC+1</u>)	PC+2	<u>PC+3</u> χ	PC+4	PC+5 χ	PC+6
Instruction Fetch		MOVWF TMR	0MOVF TMR0,V	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	1
	i.	1			i		i	
TMR0	то х	T0+1)(T0+2 X	1	NT0		NT0+1 \	NT0+2)
Instruction	1 1 1	1 1 1		≜	≜	†	†	≜
Executed	1	1	Write TMR0 executed	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0 + 1	Read TMR0 reads NT0 +

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

			(,									
	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0					
	bit 7							bit 0					
bit 7	C2OUT : Co	C2OUT: Comparator 2 output											
	1 = C2 VIN	1 = C2 VIN + > C2 VIN -											
	0 = C2 VIN	0 = C2 VIN + < C2 VIN -											
bit 6	C1OUT : Co	C1OUT: Comparator 1 output											
	1 = C1 VIN	1 = C1 Vin + > C1 Vin -											
	0 = C1 VIN+ < C1 VIN-												
bit 5-4	Unimplemented: Read as '0'												
bit 3	CIS: Comp	arator Input	Switch										
	When CM<	<2:0>: = 001	:										
	1 = C1 VIN-	- connects to	o RA3										
	0 = C1 VIN	- connects to	o RA0										
	When CM<	<2:0> = 010:											
		 connects to 											
		I- connects t											
		- connects to											
	C2 VIN	I- connects t	0 RA1										
bit 2-0	CM<2:0>:	Comparator	mode.										
	Legend:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD (ADDRESS 2007h)

CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾		BODEN	CP1	CP0 ⁽²⁾	PWRTE	WDTE	F0SC1	F0SC0
bit 13	ļ	<u> </u>	ļļ		ļ		<u> </u>	<u></u>	<u>I</u>	<u></u>	<u> </u>	ļ	bit 0
bit 13-8 5-4:	Cod 11 = 10 = 01 = 00 = Cod 11 = 00 = 00 = Cod 11 = 10 = 01 = 01 = 01 = 01 = 01 = 01 = 01 = 00 = 01 = 00 = 01 = 00	e protec = Progra = 0400h = 0200h = 0200h = 0000h = Progra = 0200h = 0000h = protec = Progra = Progra	ode prote ction for 2 m memo -07FFh c -07FFh c -07FFh c -07FFh c -03FFh c -03FFh c -03FFh c ction for 0 m memo m memo	2K progr ry code ode pro ode pro ode pro ry code ry code ode pro ode pro ode pro ode pro ode pro ode pro ry code ry code	am mem protectic tected tected tected protectic protectic tected gram me protectic protectic	ory on off on off on off mory on off on off							
		01 = Program memory code protection off00 = 0000h-01FFh code protected											
bit 7		Unimplemented: Read as '0'											
bit 6	BO	DEN: Br	own-out l	Reset E	nable bit	(1)							
		BOR en BOR dis											
bit 3	1 =	RTE : Po PWRT o PWRT e		īmer Er	able bit ⁽	1, 3)							
bit 2	1 =	TE: Wat WDT en WDT dis		mer Ena	able bit								
bit 1-0	11 = 10 = 01 = 00 =	= RC ose = HS ose = XT ose = LP ose e 1: En va	cillator cillator cillator nabling B	rown-ou	ut Reset a	automa	tically ena ower-up Ti						
		2: Al lis	l of the C ted.		-		e given the Power-up T			nable the c	code prot	tection s	cheme
Legend R = Re	l: adable b	it		W =	Writable	bit	U =	Unimple	emented	bit, read a	s '0'		

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

DESCRIPTIONS						
Field	Description					
f	Register file address (0x00 to 0x7F)					
W	Working register (accumulator)					
b	Bit address within an 8-bit file register					
k	Literal field, constant data or label					
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.					
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1					
label	Label name					
TOS	Top of Stack					
PC	Program Counter					
PCLAT H	Program Counter High Latch					
GIE	Global Interrupt Enable bit					
WDT	Watchdog Timer/Counter					
то	Time-out bit					
PD	Power-down bit					
dest	Destination either the W register or the specified regis- ter file location					
[]	Options					
()	Contents					
\rightarrow	Assigned to					
< >	Register bit field					
e	In the set of					
italics	User defined term (font is courier)					
	· · · · · · · · · · · · · · · · · · ·					

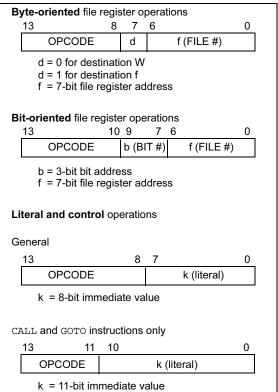
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note:	To maintain upward compatibility with									
	future PICmicro [®] products, do not use the									
	OPTION and TRIS instructions.									

All examples use the following format to represent a hexadecimal number:

0xhh

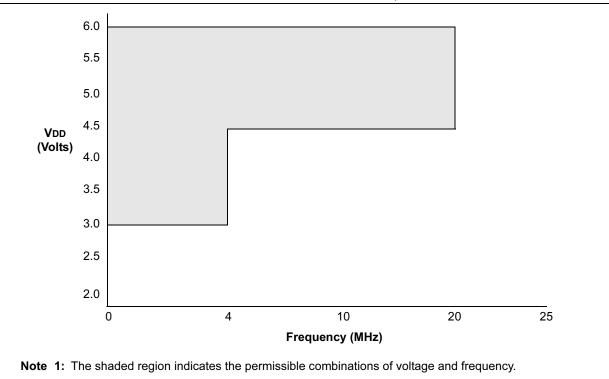
where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear				
Syntax:	[label]BCF f,b	Syntax:	[label]BTFSC f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0				
Status Affected:	None	Status Affected:	None				
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff				
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the				
Words:	1		next instruction is skipped. If bit 'b' is '0', then the next instruc-				
Cycles:	1		tion fetched during the current				
Example	BCF FLAG_REG, 7		instruction execution is discarded,				
	Before Instruction FLAG_REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.				
	After Instruction	Words:	1				
	FLAG_REG = 0x47	Cycles:	1(2)				
		Example	here btfsc FLAG,1 false goto process co				
BSF	Bit Set f		TRUE DE				
Syntax:	[<i>label</i>]BSF f,b		•				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE				
Operation:	$1 \rightarrow (f \le b >)$		After Instruction if FLAG<1> = 0.				
Status Affected:	None		PC = address TRUE				
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,				
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE				
Words:	1						
Cycles:	1						
Example	BSF FLAG_REG, 7						

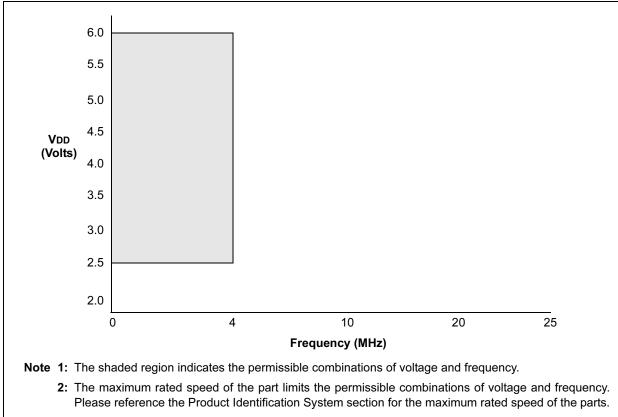
Before Instruction FLAG_REG = 0x0A After Instruction

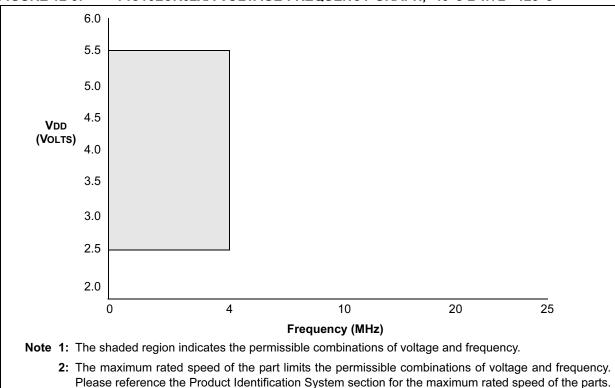
FLAG_REG = 0x8A


RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$						
Status Affected:	None						
Encoding:	00 0000 0000 1001						
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETFIE						
	After Interrupt PC = TOS GIE = 1						

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE;W contains table
TABLE	;offset value ;W now has table value ; ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Encoding:	00 0000 0000 1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETURN
	After Interrupt PC = TOS

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$			
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]			
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)			
Affected:		Status Affected:	C, DC, Z			
Encoding:	11 110x kkkk kkkk					
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff			
	complement method) from the eight bit literal 'k'. The result is placed in	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0,			
	the W register.		the result is stored in the W register.			
Words:	1		If 'd' is 1, the result is stored back in			
Cycles:	1		register 'f'.			
Example 1:	SUBLW 0x02	Words:	1			
·	Before Instruction	Cycles:	1			
	W = 1	Example 1:	SUBWF REG1,1			
	C = ?		Before Instruction			
	After Instruction		REG1= 3 W = 2			
	W = 1 C = 1; result is positive		C = ?			
Example 2:	Before Instruction		After Instruction			
Example 2.	W = 2		REG1= 1			
	C = ?		W = 2 C = 1; result is positive			
	After Instruction	Example 2:	Before Instruction			
	W = 0	·	REG1= 2			
	C = 1; result is zero		W = 2			
Example 3:	Before Instruction		C = ?			
	W = 3 C = ?		After Instruction			
	After Instruction		REG1= 0 W = 2			
	W = 0 x FF		C = 1; result is zero			
	C = 0; result is negative	Example 3:	Before Instruction			
			REG1= 1			
			W = 2 C = ?			
			After Instruction			
			REG1= 0xFF			
			W = 2			
			C = 0; result is negative			


NOTES:



2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

			Standard Operating Conditions (unless otherwise stated)						
PIC16C62X			Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended						
PIC16LC62X				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial ar -40° C \leq TA \leq +125°C for extendedOperating voltage VDD range is the PIC16C62X range.					
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V VDD=3.0V		
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
Characteristic Sym Min			Typ ⁽¹⁾	Мах	Max Units Conditions		
Supply Voltage	Vdd	4.5	—	5.5	V	HS Option from 20 - 40 MHz	
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode	
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected	
Input Low Voltage OSC1	VIL	Vss	—	0.2Vdd	V	HS mode, OSC1 externally driven	
Input High Voltage OSC1	Vih	0.8Vdd		Vdd	V	HS mode, OSC1 externally driven	

* These parameters are characterized but not tested.

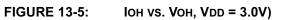
Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

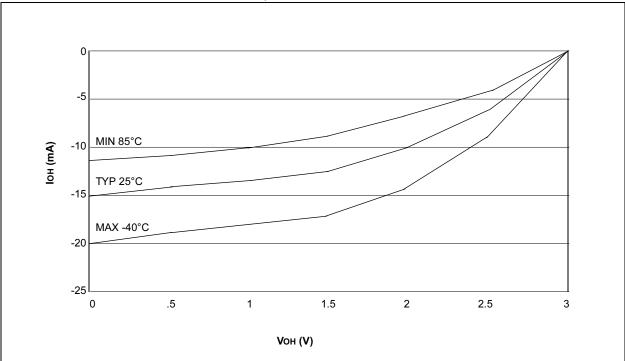
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

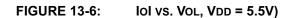
a) The test conditions for all IDD measurements in Active Operation mode are:

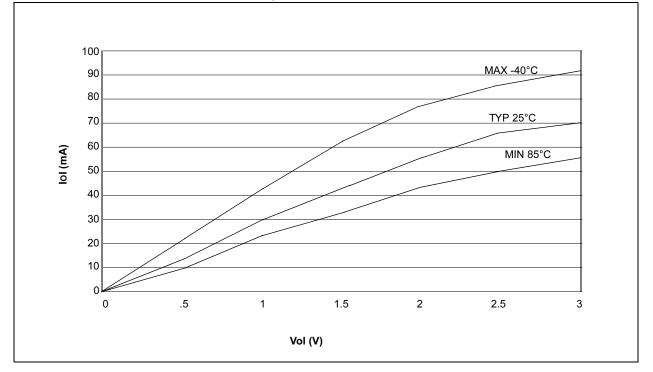
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, \overline{MCLR} = VDD; WDT disabled, HS mode with OSC2 not connected.

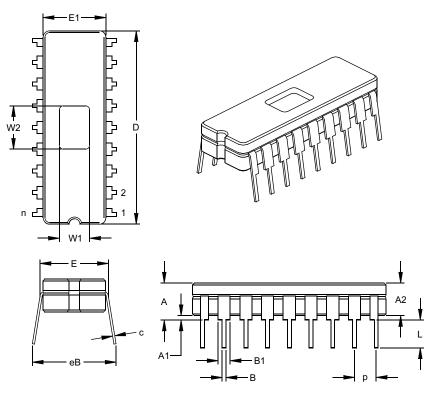

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.


12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)


AC CHARACTERISTICS All Pins Except Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
External CLKIN Frequency	Fosc	20	—	40	MHz	HS mode, OSC1 externally driven		
External CLKIN Period	Tosc	25	_	50	ns	HS mode (40), OSC1 externally driven		
Clock in (OSC1) Low or High Time	TosL, TosH	6	—		ns	HS mode, OSC1 externally driven		
Clock in (OSC1) Rise or Fall Time	TosR, TosF		_	6.5	ns	HS mode, OSC1 externally driven		
OSC1↑ (Q1 cycle) to Port out valid	TosH2ıoV		—	100	ns	_		
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	—	_	ns	—		


Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.



14.0 PACKAGING INFORMATION

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length W2		.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.