

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	- ·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620a-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EPROM-Based 8-Bit CMOS Microcontrollers

Devices included in this data sheet:

Referred to collectively as PIC16C62X.

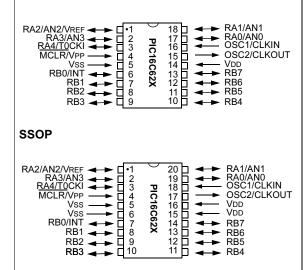
- PIC16C620 PIC16C620A
- PIC16C621 PIC16C621A
- PIC16C622 PIC16C622A
- PIC16CR620A

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
 - DC 40 MHz clock input
 - DC 100 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C620	512	80
PIC16C620A	512	96
PIC16CR620A	512	96
PIC16C621	1K	80
PIC16C621A	1K	96
PIC16C622	2K	128
PIC16C622A	2K	128

· Interrupt capability


- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

Special Microcontroller Features:

- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- · Wide operating range
 - 2.5V to 5.5V
- Commercial, industrial and extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical @ 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

4.2.2.4 PIE1 Register

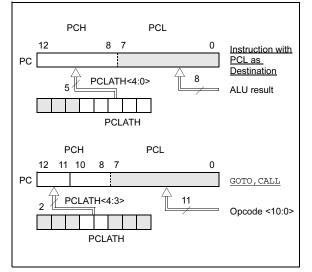
This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)												
	U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0												
		CMIE	_			—	_	—					
	bit 7	bit 7 bit 0											
bit 7	Unimpleme	Unimplemented: Read as '0'											
bit 6	CMIE : Comp 1 = Enables 0 = Disables	the Compa	arator interru	upt									
bit 5-0	Unimpleme	nted: Read	d as '0'										
	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown												

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of								
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User								
	software should ensure the appropriate								
	interrupt flag bits are clear prior to enabling								
	an interrupt.								


REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

ER 4-5:	PIRT REGI	SIER (AL	DRESS 0	СН)										
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0						
		CMIF		—	_									
	bit 7							bit 0						
bit 7	Unimplemented: Read as '0'													
bit 6	CMIF: Comparator Interrupt Flag bit													
	1 = Compai	rator input h	nas changed	l										
	0 = Compai	rator input h	nas not chan	iged										
bit 5-0	Unimpleme	ented: Rea	d as '0'											
	Legend:													
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'						
	- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown													

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

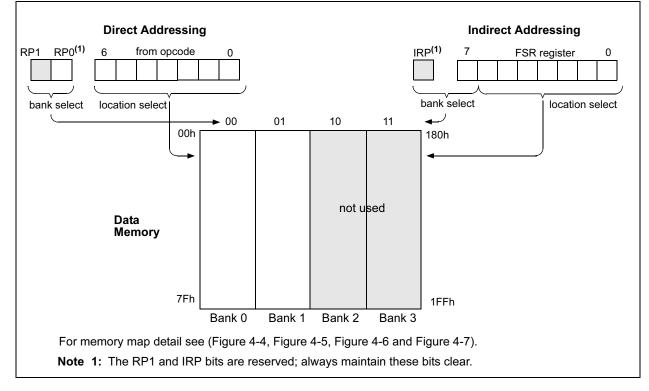
4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-9. However, IRP is not used in the PIC16C62X.

A simple program to clear RAM location 20h-7Fh using indirect addressing is shown in Example 4-1.

EXAN	IPLE 4-	1: INC	DIRECT ADDRESSING
	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,7	;all done?
	goto	NEXT	;no clear next
			;yes continue
CONTI	NUE:		

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING PIC16C62X

TABLE 5-1:PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input
RA1/AN1	bit1	ST	Input/output or comparator input
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output
RA3/AN3	bit3	ST	Input/output or comparator input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA			_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by PORTA.

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

			(,								
	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0				
	bit 7							bit 0				
bit 7	C2OUT: Comparator 2 output											
	1 = C2 VIN	+ > C2 VIN-										
	0 = C2 VIN	+ < C2 VIN-										
bit 6	C1OUT : Co	omparator 1	output									
	1 = C1 VIN	+ > C1 VIN-										
	0 = C1 VIN	+ < C1 VIN-										
bit 5-4	Unimplem	ented: Read	d as '0'									
bit 3	CIS: Comp	arator Input	Switch									
	When CM<	<2:0>: = 001	:									
	1 = C1 VIN-	- connects to	o RA3									
	0 = C1 VIN	- connects to	o RA0									
	When CM<	<2:0> = 010:										
		 connects to 										
		I- connects t										
		- connects to										
	C2 VIN	I- connects t	0 RA1									
bit 2-0	CM<2:0>:	Comparator	mode.									
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x0F	;	RA3-RA0 are
MOVWF	TRISA	;	inputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank O
CALL	DELAY10	;	10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Note: - = Unimplemented, read as "0"

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	นนนน นนนน	<u></u>
INDF	00h		_	_
TMR0	01h	xxxx xxxx	սսսս սսսս	นนนน นนนน
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
8Ch	PIE1	_	CMIE	_	_	—	_	—	_	-0	-0

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 9-3 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-3:

- · Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-3: SAVING THE STATUS AND W REGISTERS IN RAM

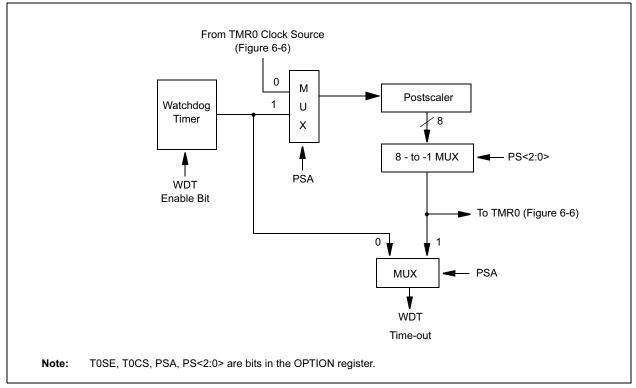
MOVWF	W_TEMP	;copy W to temp register, ;could be in either bank
SWAPF	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regardless ;of current bank
MOVWF	STATUS_TEMP	;save status to bank 0 ;register
:		
:	(ISR)	
:		
SWAPF	STATUS_TEMP, W	;swap STATUS_TEMP register ;into W, sets bank to origi- nal ;state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see


DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-7: SUMMARY OF WATCHDOG TIMER REGISTERS
--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	—	—
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded cells are not used by the Watchdog Timer.

Note: – = Unimplemented location, read as "0"

+ = Reserved for future use

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

DESCRIPTIONS					
Field	Description				
f	Register file address (0x00 to 0x7F)				
W	Working register (accumulator)				
b	Bit address within an 8-bit file register				
k	Literal field, constant data or label				
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.				
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1				
label	Label name				
TOS	Top of Stack				
PC	Program Counter				
PCLAT H	Program Counter High Latch				
GIE	Global Interrupt Enable bit				
WDT	Watchdog Timer/Counter				
то	Time-out bit				
PD	Power-down bit				
dest	Destination either the W register or the specified regis- ter file location				
[]	Options				
()	Contents				
\rightarrow	Assigned to				
< >	Register bit field				
∈	In the set of				
italics	User defined term (font is courier)				

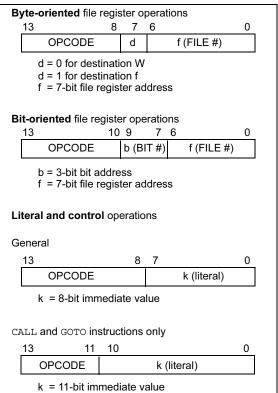
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note:	To maintain upward compatibility with	
	future PICmicro® products, do not use the	
	OPTION and TRIS instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$
	0 ≤ b < 7	Operation:	(PC) + 1 \rightarrow TOS,
Operation:	skip if (f) = 1		$k \rightarrow PC < 10:0>$, (PCLATH<4:3>) $\rightarrow PC < 12:11>$
Status Affected:	None	Status Affected:	None
Encoding:	01 11bb bfff ffff	Encoding:	10 0kkk kkkk kkkk
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped.	Description:	Call Subroutine. First, return
	If bit 'b' is '1', then the next instruc-	Decomption	address (PC+1) is pushed onto
	tion fetched during the current		the stack. The eleven bit immedi-
	instruction execution, is discarded and a NOP is executed instead.		ate address is loaded into PC bits <10:0>. The upper bits of the PC
	making this a two-cycle instruction.		are loaded from PCLATH. CALL is
Words:	1		a two-cycle instruction.
Cycles:	1(2)	Words:	1
Example	here bifss FLAG,1	Cycles:	2
	FALSE GOTO PROCESS_CO TRUE • DE	Example	HERE CALL THER
	·		E
	• Defens lastruction		Before Instruction
	Before Instruction PC = address HERE		PC = Address HERE After Instruction
	After Instruction		PC = Address THERE
	if FLAG<1> = 0, PC = address FALSE		TOS = Address HERE+1
	if FLAG<1> = 1,		
	PC = address TRUE	CLRF	Clear f
		Syntax:	[label] CLRF f
		Operands:	$0 \leq f \leq 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
		Status Affected:	Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF FLAG_REG
		•	Before Instruction
			FLAG_REG = 0x5A
			After Instruction FLAG REG = 0x00
			Z = 1

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
Words: Cycles: Example	instruction. 1 1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		Before Instruction $\begin{array}{rcl} RESULT &= & 0x13 \\ W &= & 0x91 \\ \end{array}$ After Instruction $\begin{array}{rcl} RESULT &= & 0x13 \\ W &= & 0x93 \\ Z &= & 1 \\ \end{array}$
	• Before Instruction	MOVLW	Move Literal to W
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1	Operands:	$0 \le k \le 255$
	if CNT= 0, PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if CNT≠ 0,	Status Affected:	None
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Syntax:	[<i>label</i>] IORLW k	Words:	1
Operands:	$0 \le k \le 255$	Cycles:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A
Status Affected:	Z	Example	After Instruction
Encoding:	11 1000 kkkk kkkk		W = 0x5A
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
	Before Instruction W = 0x9A After Instruction W = 0xBE		

W = Z =

0xBF 1

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

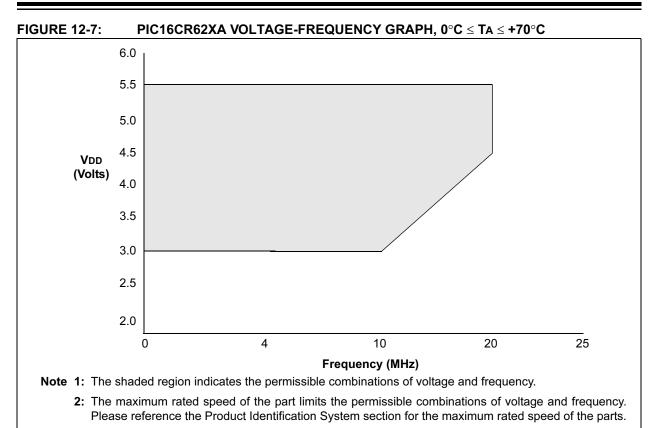
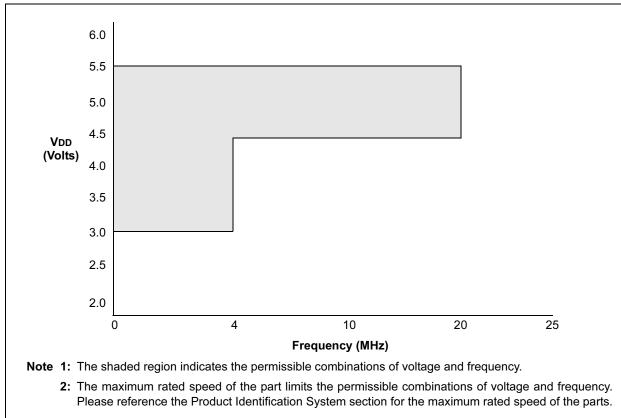



FIGURE 12-8: PIC16CR62XA VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq 0°C, +70°C \leq TA \leq +125°C

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC	TERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions			
	VIL	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	_	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise			
D031		with Schmitt Trigger input	Vss		0.2VDD	V				
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)			
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V				
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V				
	Vih	Input High Voltage								
		I/O ports								
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V, otherwise			
			0.25 VDD + 0.8		Vdd					
D041		with Schmitt Trigger input	0.8 VDD		Vdd					
D042		MCLR RA4/T0CKI	0.8 Vdd	—	Vdd	V				
D043		OSC1 (XT, HS and LP)	0.7 Vdd	—	Vdd	V				
D043A		OSC1 (in RC mode)	0.9 VDD				(Note 1)			
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
	lı∟	Input Leakage Current ^(2, 3)								
		I/O ports (except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D060		PORTA	—	—	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \le VPIN \le VDD$			
D063		OSC1, MCLR	_	—	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	Vol	Output Low Voltage								
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C			
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C			
D083		OSC2/CLKOUT (RC only)	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C			
					0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C			
	Vон	Output High Voltage ⁽³⁾								
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C			
			VDD-0.7	_	—	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C			
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C			
			VDD-0.7	-	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°C			
*D150	Vod	Open Drain High Voltage			8.5	V	RA4 pin			
		Capacitive Loading Specs on Output Pins								
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF				
		parameters are characterized but not	<u> </u>	1	~~	۳.				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

NOTES:

NOTES:

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	50
BSF Instruction	
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	
MPLAB C18	
MPLAB C30	
CALL Instruction	
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	
_	

D

Data Memory Organization14
DC Characteristics
PIC16C717/770/771 88, 89, 90, 91, 96, 97, 98
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet
Development Support75
E
Errata
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

1	
I/O Ports	
I/O Programming Considerations	
ID Locations	
INCF Instruction	
INCFSZ Instruction In-Circuit Serial Programming	
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	
Instruction Set	. –
ADDLW	63
ADDWF	
ANDLW	
ANDWF	
BCF BSF	
BSF BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	66
CLRWDT	66
COMF	
DECF	
DECFSZ	
GOTO	
INCFINCFSZ	
INCI SZ	
IORWF	
MOVF	
MOVLW	68
MOVWF	69
NOP	
OPTION	
RETFIE	
RETLW RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	72
SWAPF	73
TRIS	
XORLW	
XORWF	
Instruction Set Summary INT Interrupt	
INTCON Register	
Interrupts	
IORLW Instruction	
IORWF Instruction	
Μ	
MOVF Instruction	69
MOVLW Instruction	
MOVWF Instruction	69
MPLAB ASM30 Assembler, Linker, Librarian	76
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	77
MPLAB ICE 4000 High Performance Universal	77
In-Circuit Emulator MPLAB Integrated Development Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	