

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

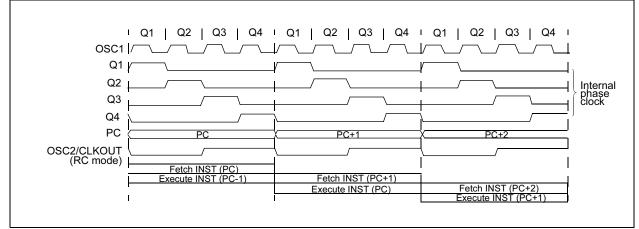
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620a-20-ss

Email: info@E-XFL.COM

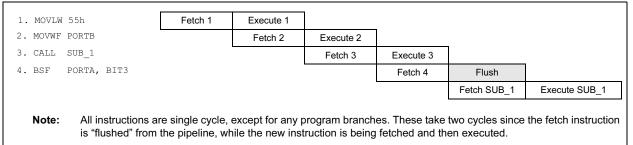
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	-	ter Bank Sel	-	d for indirect	addressing)						
	1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
	The IRP bit is reserved on the PIC16C62X; always maintain this bit clear.											
bit 6-5	RP<1:0>: Register Bank Select bits (used for direct addressing)											
		1 (80h - FFh										
		0 (00h - 7Fh										
	Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C62X; always maintain this t clear.											
bit 4	TO: Time-c	out bit										
		ower-up, CLI	RWDT instruc	ction. or SLE	EP instruction	on						
		time-out oc		,								
bit 3	PD: Power	-down bit										
	-	ower-up or b cution of the	-		n							
bit 2	Z: Zero bit											
		sult of an arit sult of an arit)						
bit 1		arry/borrow b		• •)(for borrow	the polarity				
	is reversed	-	ζ, ,		·							
		-out from the				rred						
		ry-out from th										
bit 0	•	orrow bit (AD										
	•	-out from the ry-out from th	-									
	Note:	For borrow t	he polarity i	s reversed.	A subtraction	on is execut	ed by addin	g the two's				
		complement						s, this bit is				
		loaded with e	either the hig	gh or low or	der bit of the	source reg	ister.					
	Legend:	L. L. 14					hit on all	0				
	R = Reada			ritable bit		•	bit, read as					
	- n = Value	at POR	1′ = Bi	it is set	'0' = Bit i	scleared	x = Bit is u	nknown				

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

E PE Global Internables all un isables all in Peripheral nables all p TMR0 Ove nables the T isables the	Interrupt Enable n-masked periph peripheral interru	e bit heral interrupt pts	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF bit 0												
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	s			bit 0												
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S															
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S															
sables all in Peripheral nables all un sables all p TMR0 Ove nables the T isables the	nterrupts Interrupt Enable n-masked periph peripheral interru erflow Interrupt Er TMR0 interrupt	e bit heral interrupt pts	s															
nables all u isables all p TMR0 Ove nables the isables the	n-masked periph peripheral interru rflow Interrupt Er TMR0 interrupt	neral interrupt pts	S															
sables all p TMR0 Ove nables the sables the	peripheral interru erflow Interrupt Er TMR0 interrupt	pts	S															
TMR0 Ove nables the sables the	rflow Interrupt Er TMR0 interrupt																	
nables the isables the	TMR0 interrupt	nable bit																
sables the						T0IE: TMR0 Overflow Interrupt Enable bit												
	I MRU interrupt																	
INTE: RB0/INT External Interrupt Enable bit																		
 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 																		
RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt																		
	RB port change	•																
TMR0 Ove	rflow Interrupt Fl	ag bit																
MR0 registe	er has overflowed	d (must be cle	eared in soft	ware)														
MR0 registe	er did not overflov	W																
INTF: RB0/INT External Interrupt Flag bit																		
				red in softwa	are)													
RB Port Cl	hange Interrupt F	Flag bit																
'hen at leas		•	-	(must be cle	ared in softw	ware)												
	ne RB0/INT ne RB0/INT RB Port C hen at leas	ne RB0/INT external interrune RB0/INT external interrun RB Port Change Interrupt I hen at least one of the RB<	ne RB0/INT external interrupt occurred (m ne RB0/INT external interrupt did not occ RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins cha one of the RB<7:4> pins have changed s	ne RB0/INT external interrupt occurred (must be clea ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state one of the RB<7:4> pins have changed state	ne RB0/INT external interrupt occurred (must be cleared in softwa ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cle	ne RB0/INT external interrupt occurred (must be cleared in software) ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cleared in softwore) one of the RB<7:4> pins have changed state												

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)
---------------	--------------------------------------

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

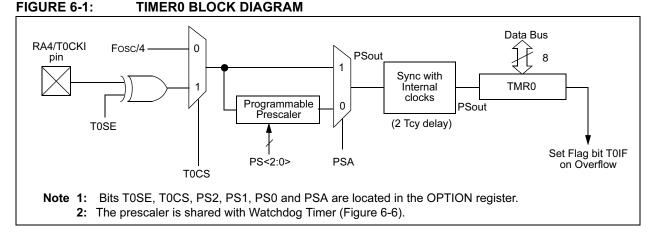
Note 1: Shaded bits are not used by PORTB.

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP, since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing.

FIGURE 6-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER

(Program Counter)	(PC-1) PC	(<u>PC+1</u>)	PC+2	<u>PC+3</u> χ	PC+4	PC+5 χ	PC+6
Instruction Fetch		MOVWF TMR	0MOVF TMR0,V	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	1
	i.	1			i		i	
TMR0	то х	T0+1)(T0+2 X	1	NT0		NT0+1 \	NT0+2)
Instruction	1 1 1	1 1 1		≜	≜	†	†	≜
Executed	1	1	Write TMR0 executed	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0	Read TMR0 reads NT0 + 1	Read TMR0 reads NT0 +

9.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 9-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 9-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

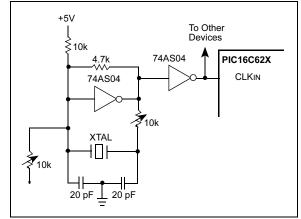
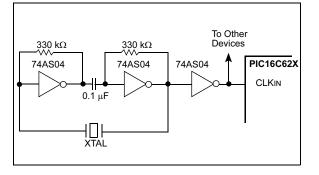
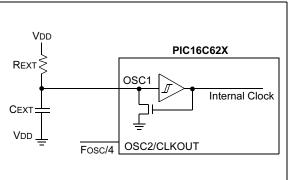



Figure 9-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 9-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

9.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 9-5 shows how the R/C combination is connected to the PIC16C62X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 13.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 13.0 for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 9-5: RC OSCILLATOR MODE

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

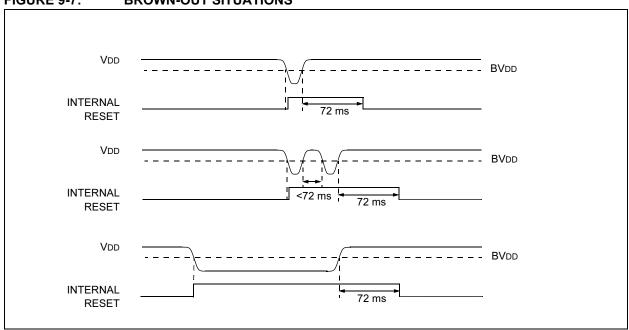
9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

9.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (<u>PWRT</u> disabled), there will be no time-out at all. Figure 9-8, Figure 9-9 and Figure 9-10 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC16C62X device operating in parallel.

Table 9-4 shows the RESET conditions for some special registers, while Table 9-5 shows the RESET conditions for all the registers.

9.4.6 POWER CONTROL (PCON)/ STATUS REGISTER

The power control/STATUS register, PCON (address 8Eh), has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET, if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Reset	Wake-up
	PWRTE = 0	PWRTE = 1	Brown-out Reset	from SLEEP
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc
RC	72 ms	_	72 ms	_

TABLE 9-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-2 :	STATUS/PCON BITS AND THEIR SIGNIFICANCE
--------------------	---

POR	BOR	то	PD	
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
83h	STATUS				TO	PD				0001 1xxx	000q quuu
8Eh	PCON	_	_		_	_	_	POR	BOR	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	นนนน นนนน	<u></u>
INDF	00h		_	_
TMR0	01h	xxxx xxxx	սսսս սսսս	นนนน นนนน
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear
Syntax:	[label]BCF f,b	Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the
Words:	1		next instruction is skipped. If bit 'b' is '0', then the next instruc-
Cycles:	1		tion fetched during the current
Example	BCF FLAG_REG, 7		instruction execution is discarded,
	Before Instruction FLAG_REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.
	After Instruction	Words:	1
	FLAG_REG = 0x47	Cycles:	1(2)
		Example	here btfsc FLAG,1 false goto process co
BSF	Bit Set f		TRUE DE
Syntax:	[<i>label</i>]BSF f,b		•
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE
Operation:	$1 \rightarrow (f \le b >)$		After Instruction if FLAG<1> = 0.
Status Affected:	None		PC = address TRUE
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE
Words:	1		
Cycles:	1		
Example	BSF FLAG_REG, 7		

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
Words: Cycles: Example	instruction. 1 1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		Before Instruction $\begin{array}{rcl} \text{RESULT} &= & 0x13 \\ W &= & 0x91 \\ \end{array}$ After Instruction $\begin{array}{rcl} \text{RESULT} &= & 0x13 \\ W &= & 0x93 \\ Z &= & 1 \\ \end{array}$
	Before Instruction	MOVLW	Move Literal to W
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1	Operands:	$0 \le k \le 255$
	if CNT= 0, PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if CNT≠ 0,	Status Affected:	None
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Syntax:	[<i>label</i>] IORLW k	Words:	1
Operands:	$0 \le k \le 255$	Cycles:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A
Status Affected:	Z	Example	After Instruction
Encoding:	11 1000 kkkk kkkk		W = 0x5A
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
	Before Instruction W = 0x9A After Instruction		
	$W = 0_{\rm Y} {\rm BE}$		

W = Z =

0xBF 1

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk		
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0,
	the W register.		the result is stored in the W register.
Words:	1		If 'd' is 1, the result is stored back in
Cycles:	1		register 'f'.
Example 1:	SUBLW 0x02	Words:	1
·	Before Instruction	Cycles:	1
	W = 1	Example 1:	SUBWF REG1,1
	C = ?		Before Instruction
	After Instruction		REG1= 3 W = 2
	W = 1 C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2		REG1= 1
	C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0	·	REG1= 2
	C = 1; result is zero		W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction
	After Instruction		REG1= 0 W = 2
	W = 0 x FF		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1= 1
			W = 2 C = ?
			After Instruction
			REG1= 0xFF
			W = 2
			C = 0; result is negative

NOTES:

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended)

PIC16C62X Standard Operating Conditions (unless otherwis Operating temperature -40°C ≤ TA ≤ +85°C for inc 0°C ≤ TA ≤ +70°C for co -40°C ≤ TA ≤ +125°C for e Standard Operating Conditions (unless otherwise)	dustrial and mmercial and
$\begin{array}{c} \mbox{PIC16LC62X} \\ \mbox{PIC16LC62X} \\ \mbox{Operating temperature} & -40^{\circ}\mbox{C} & \leq \mbox{TA} \leq +85^{\circ}\mbox{C for inc} \\ & 0^{\circ}\mbox{C} & \leq \mbox{TA} \leq +70^{\circ}\mbox{C for co} \\ & -40^{\circ}\mbox{C} & \leq \mbox{TA} \leq +125^{\circ}\mbox{C for e} \\ & \mbox{Operating voltage VDD range is the PIC16C62X range} \end{array}$	dustrial and mmercial and extended
Param. Sym Characteristic Min Typ† Max Units Conditio No. Conditio	ons
D001 VDD Supply Voltage 3.0 — 6.0 V See Figures 12-1, 12-2, 12-3	3, 12-4, and 12-5
D001 VDD Supply Voltage 2.5 — 6.0 V See Figures 12-1, 12-2, 12-3	3, 12-4, and 12-5
D002 VDR RAM Data Retention Voltage ⁽¹⁾ — 1.5* — V Device in SLEEP mode	
D002 VDR RAM Data Retention Voltage ⁽¹⁾ — 1.5* — V Device in SLEEP mode	
D003 VPOR VDD start voltage to ensure — Vss — V See section on Power-on Report	eset for details
D003 VPOR VDD start voltage to ensure Power-on Reset — Vss — V See section on Power-on Reset	eset for details
D004 SVDD VDD rise rate to ensure Power-on Reset 0.05* — — V/ms See section on Power-on Reset	eset for details
D004 SVDD VDD rise rate to ensure 0.05* — — V/ms See section on Power-on Reset	eset for details
D005 VBOR Brown-out Detect Voltage 3.7 4.0 4.3 V BOREN configuration bit is a	cleared
D005 VBOR Brown-out Detect Voltage 3.7 4.0 4.3 V BOREN configuration bit is a	cleared
D010 IDD Supply Current ⁽²⁾ - 1.8 3.3 mA Fosc = 4 MHz, VDD = 5.5V, mode, (Note 4)*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WD1 disabled, LP
9.0 20 mA Fosc = 20 MHz, VDD = 5.5V mode	, WDT disabled, HS
D010 IDD Supply Current ⁽²⁾ $-$ 1.4 2.5 mA Fosc = 2.0 MHz, VDD = 3.0 V mode (Note 4)	/, WDT disabled, XT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WDT disabled, LP
D020 IPD Power-down Current ⁽³⁾ — 1.0 2.5 μ A VDD=4.0V, WDT disabled (125°C)	
D020 IPD Power-down Current ⁽³⁾ — 0.7 2 μ A VDD=3.0V, WDT disabled	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C	C62XA		$\begin{array}{r llllllllllllllllllllllllllllllllllll$				
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

PIC16C	62XA/CR62XA					hs (unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial and	
						-40°C	$\leq TA \leq +125^{\circ}C$ for extended
PIC16L	C62X/I	LC62XA/LCR62XA					ns (unless otherwise stated) \leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial and \leq TA \leq +125°C for extended
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.8V 0.15 Vdd	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss	—	0.2 VDD	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V	
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V	
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	-	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss	—	0.2 Vdd	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V	
		OSC1 (in LP)	Vss	_	0.6 Vdd- 1.0	V	
	VIH	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	V _{DD} = 4.5V to 5.5V otherwise
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD		
D042		MCLR RA4/T0CKI	0.8 VDD	_	VDD	V	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	_	VDD	V	(Note 1)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

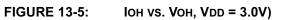
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

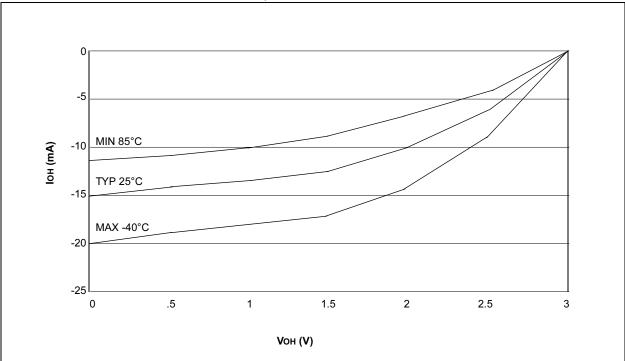
3: Negative current is defined as coming out of the pin.

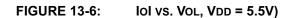
12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

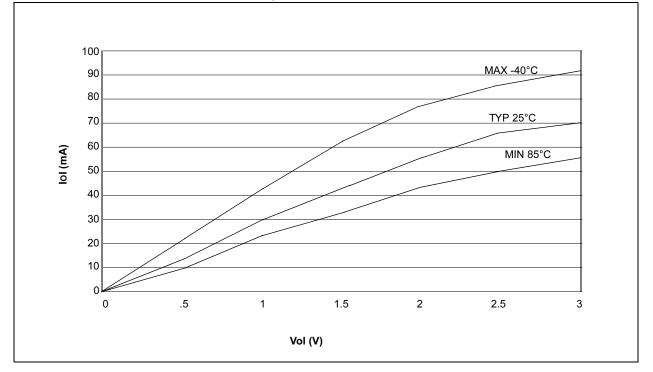
PIC16C	62X/C6	2XA/CR62XA	$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
PIC16L	C62X/L	C62XA/LCR62XA	$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C		
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C		
			_	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C		
	Voн	Output High Voltage ⁽³⁾	1						
D090		I/O ports (Except RA4)	Vdd-0.7	_	_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, +125°C		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7	_	_	V	Iон = -1.0 mA, VDD = 4.5V, +125°С		
	Vон	Output High Voltage ⁽³⁾							
D090		I/O ports (Except RA4)	VDD-0.7	—	-	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C		
			VDD-0.7	—	-	V	ЮН = -2.5 mA, VDD = 4.5V, +125°С		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C		
*D450	1/22	On an Duain Llink) (alta na	VDD-0.7	_		V V	IOH = -1.0 mA, VDD = 4.5V, +125°C		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

*

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device Frequency Range Temperature Range Device PIC16C62X: VDD range 3.0 PIC16C62XT: VDD range 3.0 PIC16C62XA: VDD range 3.0 PIC16C7620A: VDD range 3.0 PIC16C7	<u>/XX</u>	<u>ka xxx</u>	Examples:
$\begin{array}{rcl} \mbox{PiC16C62XT: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 2} \\ \mbox{PiC16LC62XT: VDD range 2} \\ \mbox{PiC16LC62XA: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\ \mbox{PiC16CR620A: VDD range 2} \\ \mbox{PiC16LC620AT: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\$	Package	kage Pattern	 a) PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
04 4 MHz (XT and RC os 20 20 20 MHz (HS osc) Temperature Range - I -40°C to +70°C I -40°C to +85°C E -40°C to +125°C Package P Package P SO = SO = SO = SO = SOP (Gull Wing SS = SOP (209 mil) =	0V to 6.0V (Tap .0V to 5.5V 3.0V to 5.5V (Ta 5.5V to 6.0V 2.5V to 6.0V (Ta 2.5V to 5.5V 2.5V to 5.5V (Ta 2.5V to 5.5V (Ta 2.5V to 5.5V) 2.5V to 5.5V (Ta 2.5V to 5.5V)	.0V (Tape and Reel) .5V 5.5V (Tape and Reel) .0V 6.0V (Tape and Reel) 5.5V 5.5V (Tape and Reel) 5.5V 5.5V (Tape and Reel) 0.5.5V	b) PIC16LC622-04I/SO = Industrial temp., SOIC package, 200 kHz, extended VDD limits.
Package P = PDIP SO = SOIC (Gull Wing SS = SSOP (209 mil)	c)		
SO = SOIC (Gull Wing SS = SSOP (209 mil)			
		nil body)	
Pattern 3-Digit Pattern Code for QT	P (blank otherw	k otherwise)	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.