

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620a-20e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

NOTES:

=

RETFIE	Return from Interrupt	RETLW	Return with Literal in W
Syntax:	[label] RETFIE	Syntax:	[label] RETLW k
Operands:	None	Operands:	0 k 255
Operation:	TOS PC, 1 GIE	Operation:	k (W); TOS PC
Status Affected	: None	Status Affected:	None
Encoding:	00 0000 0000 1001	Encoding:	11 01xx kkkk kkkk
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE	Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
	(INTCON<7>). This is a two-cycle instruction.	Words:	1
Words:	1	Cycles:	2
Cycles:	2	Example	CALL TABLE;W contains table
Example	RETFIE After Interrupt PC = TOS GIE = 1	TABLE	;offset value ;W now has table value
			ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;
			RETLW kn ; End of table
			Before Instruction W = 0x07 After Instruction W = value of k8
		RETURN	Return from Subroutine
		Syntax:	[label] RETURN
		Operands:	None
		Operation:	TOS PC
		Status Affected:	None
		Encoding:	00 0000 0000 1000
		Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
		Words:	1
		Cycles:	2
		Example	RETURN
			After Interrupt PC = TOS

PIC16C62X

Syntax:[label]SUBLW kSyntax:[label]SUBWF f,dOperands:0 k 255Operands:0 f 127Operation:k - (W) W)Operands:0 f 127StatusC, DC, ZOperation:(f) - (W) dest)Affected:StatusC, DC, ZEncoding:11110xkkkkDescription:The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register.Image: Oold for the eight Description:Words:1
Operation:k - (W) W)d $[0,1]$ StatusC, DC, ZOperation: $(f) - (W)$ dest)Affected:StatusC, DC, ZEncoding:11 110x kkkk kkkkStatusDescription:The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register.Operation:Words:1
Status C, DC, Z Affected: C, DC, Z Encoding: 11 110x kkkk Description: The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register. Operation: (f) - (W) dest) Words: 1 1 1 1
Affected: Status C, DC, Z Encoding: 11 110x kkkk kkkk Description: The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register. Status C, DC, Z Words: 1 1 1 1 1 1
Encoding:11110xkkkkkkkkAffected:Description:The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register.Affected: Encoding:000010dfffffffSubtract (2 s complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register.Description:Subtract (2 s complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register.
Encoding:11110xkkkkkkkkDescription:The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register.Encoding:000010dfffffffSubtract (2 s complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register.Description:Words:1
Description: The W register is subtracted (2 s complement method) from the eight bit literal 'k'. The result is placed in the W register. Description: Words: 1
complement method) from the eight bit literal 'k'. The result is placed in the W register.Description:Subtract (2 s complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register.Words:1Image: 1Image: 1
the W register.the result is stored in the W register.Words:1If 'd' is 1, the result is stored back in
Words: 1 If 'd' is 1, the result is stored back in
Cycles: 1 Words: 1
Example 1: SUBLW 0x02 Cycles: 1
Before Instruction Example 1: SUBWF REG1, 1
W = 1
W = 2
W = 1 C = 1; result is positive
Example 2: Before Instruction After Instruction
REG1= 1
W = 2 W = 2 C = ? C = 1; result is positive
After Instruction Example 2: Before Instruction
W = 0 REG1= 2
C = 1; result is zero $W = 2$
Example 3: Before Instruction C = ?
W = 3 After Instruction
C = ? REG1 = 0
After Instruction W = 2 C = 1; result is zero
W = 0xFF C = 0; result is negative Example 3: Before Instruction
REG1= 1
W = 2
C = ?
After Instruction
$\begin{array}{rcl} REG1=& 0xFF \\ W &=& 2 \end{array}$
W = 2 C = 0; result is negative