

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c620a-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

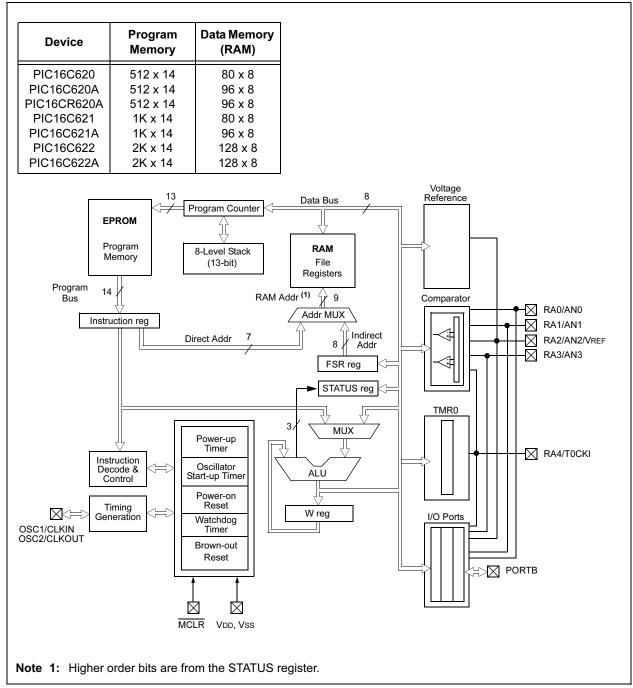
Microchip's PICSTART[®] and PRO MATE[®] programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices


Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

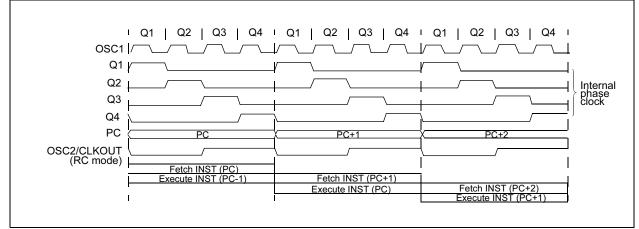
2.4 Serialized Quick-Turnaround-Productionsm (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

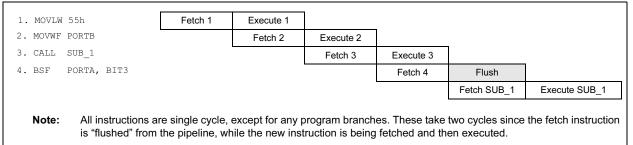
FIGURE 3-1: BLOCK DIAGRAM

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

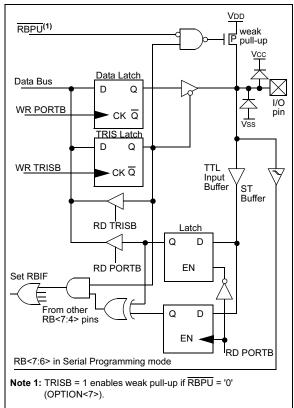
It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
	IRP	RP1	RP0	TO	PD	Z	DC	С	
	bit 7							bit 0	
bit 7	IRP: Register Bank Select bit (used for indirect addressing)								
		, 3 (100h - 1 , 1 (00h - FF							
		t is reserved		16C62X; alv	/ays maintai	n this bit cle	ar.		
bit 6-5		Register Ban			-				
		1 (80h - FFh							
		0 (00h - 7Fh							
	Each bank clear.	is 128 bytes	5. The RP1 t	oit is reserve	ed on the PIC	C16C62X; a	lways mainta	ain this bit	
bit 4	TO: Time-c	out bit							
		ower-up, CLI	RWDT instruc	ction. or SLE	EP instruction	on			
		time-out oc		,					
bit 3	PD: Power	-down bit							
	-	ower-up or b cution of the	-		n				
bit 2	Z: Zero bit								
		sult of an arit sult of an arit)			
bit 1				• •)(for borrow	the polarity	
	DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(for borrow the polarity is reversed)								
		-out from the				rred			
		ry-out from th							
bit 0	•	orrow bit (AD							
	•	-out from the ry-out from th	-						
	Note:	For borrow t	he polarity i	s reversed.	A subtraction	on is execut	ed by addin	g the two's	
		complement						s, this bit is	
		loaded with e	either the hig	gh or low or	der bit of the	source reg	ister.		
	Legend:	L. L. 14					hit on all	0	
	R = Reada			ritable bit		•	bit, read as		
	- n = Value	at POR	1′ = Bi	it is set	'0' = Bit i	scleared	x = Bit is u	nknown	

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a High Impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

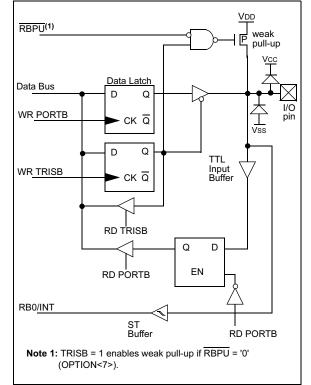
Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A \ typical$). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (e.g., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

FIGURE 5-5: BLOCK DIAGRAM OF RB<7:4> PINS

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes.)

Note:	If a change on the I/O pin should occur						
	when the read operation is being executed						
	(start of the Q2 cycle), then the RBIF inter-						
	rupt flag may not get set.						

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

9.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up, is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q	3 Q4 Q1 Q2 Q3 Q4 Q	Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4
OSC1 //////		AAAAA				
CLKOUT(4)		Tost(2)	<u> </u>		\ <u>`</u>	
INT pin	1 I		1 1		1	
NTF flag			Interrupt Latend	SV.		
INTCON<1>)		≉	(Note 2)	,		
GIE bit INTCON<7>)		Processor in SLEEP	1			
INSTRUCTION FLOW			1 1 1		1	
PC X PC	<u>Υ PC+1 Χ</u>	PC+2	X PC+2	PC + 2	<u>χ 0004h χ</u>	0005h
Instruction { Inst(PC) =	SLEEP Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 9-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT

3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

9.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

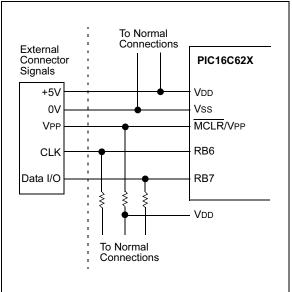
Note:	Microchip	does	not	recommend	code			
	protecting windowed devices.							

9.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. Only the Least Significant 4 bits of the ID locations are used.

9.11 In-Circuit Serial Programming™

The PIC16C62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specification (DS30228).

A typical In-Circuit Serial Programming connection is shown in Figure 9-19.

FIGURE 9-19:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

	DESCRIPTIONS
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLAT H	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified regis- ter file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

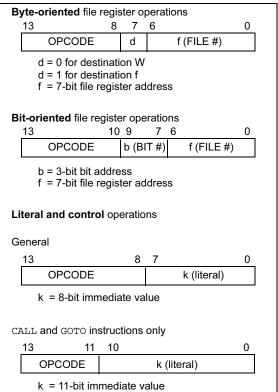
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note:	To maintain upward compatibility with	
	future PICmicro® products, do not use the	÷
	OPTION and TRIS instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to reg- ister 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F
	$\begin{array}{rcl} \text{OPTION} &= & 0x4F \\ \text{W} &= & 0x4F \end{array}$

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No operation						
Status Affected:	None						
Encoding:	00	0000	0xx0	0000			
Description:	No opera	ition.					
Words:	1						
Cycles:	1						
Example	NOP						

OPTION	Load Option Register								
Syntax:	[label] OPTION								
Operands:	None								
Operation:	$(W) \rightarrow OPTION$								
Status Affected:	None								
Encoding:	00	0000	0110	0010					
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a read- able/writable register, the user can directly address it.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibil- ity with future PICmicro [®] products, do not use this instruction.								

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended)

	dustrial and mmercial and					
PIC16LC62X $0^{\circ}C \le TA \le +70^{\circ}C$ for con- $-40^{\circ}C \le TA \le +125^{\circ}C$ for e						
Param. Sym Characteristic Min Typ† Max Units Conditio No. Conditio	ons					
D001 VDD Supply Voltage 3.0 — 6.0 V See Figures 12-1, 12-2, 12-3	3, 12-4, and 12-5					
D001 VDD Supply Voltage 2.5 — 6.0 V See Figures 12-1, 12-2, 12-3	3, 12-4, and 12-5					
D002 VDR RAM Data Retention Voltage ⁽¹⁾ — 1.5* — V Device in SLEEP mode						
D002 VDR RAM Data Retention Voltage ⁽¹⁾ — 1.5* — V Device in SLEEP mode						
D003 VPOR VDD start voltage to ensure — Vss — V See section on Power-on Report	eset for details					
D003 VPOR VDD start voltage to ensure Power-on Reset — Vss — V See section on Power-on Reset	eset for details					
D004 SVDD VDD rise rate to ensure Power-on Reset 0.05* — — V/ms See section on Power-on Reset	eset for details					
D004 SVDD VDD rise rate to ensure 0.05* — — V/ms See section on Power-on Reset	eset for details					
D005 VBOR Brown-out Detect Voltage 3.7 4.0 4.3 V BOREN configuration bit is a	cleared					
D005 VBOR Brown-out Detect Voltage 3.7 4.0 4.3 V BOREN configuration bit is a	cleared					
D010 IDD Supply Current ⁽²⁾ - 1.8 3.3 mA Fosc = 4 MHz, VDD = 5.5V, mode, (Note 4)*						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WD1 disabled, LP					
9.0 20 mA Fosc = 20 MHz, VDD = 5.5V mode	, WDT disabled, HS					
D010 IDD Supply Current ⁽²⁾ $-$ 1.4 2.5 mA Fosc = 2.0 MHz, VDD = 3.0 V mode (Note 4)	/, WDT disabled, XT					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WDT disabled, LP					
D020 IPD Power-down Current ⁽³⁾ — 1.0 2.5 μ A VDD=4.0V, WDT disabled (125°C)						
D020 IPD Power-down Current ⁽³⁾ — 0.7 2 μ A VDD=3.0V, WDT disabled						

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

PIC16CR62XA-04 PIC16CR62XA-20			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16LCR62XA-04		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
D001	Vdd	Supply Voltage	3.0	—	5.5	V	See Figures 12-7, 12-8, 12-9		
D001	Vdd	Supply Voltage	2.5	—	5.5	V	See Figures 12-7, 12-8, 12-9		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared		
D010	Idd	Supply Current ⁽²⁾	_	1.2 500	1.7 900	mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode,		
			_	1.0	2.0	mA	(Note 4) Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)		
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS		
			—	3.0	6.0	mA	mode		
				35	70	μA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode		
D010	IDD	Supply Current ⁽²⁾	—	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*		
			—	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)		
			—	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode		

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X/C6	2XA/CR62XA	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$						
PIC16LC62X/LC62XA/LCR62XA $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commerce						$ \begin{array}{ll} C & \leq TA \leq +85^{\circ}C \mbox{ for industrial and} \\ C & \leq TA \leq +70^{\circ}C \mbox{ for commercial and} \end{array} $			
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	Vih	Input High Voltage							
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise		
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD				
D042		MCLR RA4/T0CKI	0.8 VDD	_	Vdd	V			
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	-	Vdd	V	(Note 1)		
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS		
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss ≤ VPIN ≤ VDD, pin at hi-impedance		
D060		PORTA	_	_	±0.5	μΑ	$Vss \leq VPIN \leq VDD$, pin at hi-impedance		
D061		RA4/T0CKI	_	_	±1.0	μΑ	$Vss \leq VPIN \leq VDD$		
D063		OSC1, MCLR	_	_	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	lı∟	Input Leakage Current ^(2, 3)							
		I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance		
D060		PORTA	-	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance		
D061		RA4/T0CKI	-	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Vol	Output Low Voltage							
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C		
			—	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C		
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C		

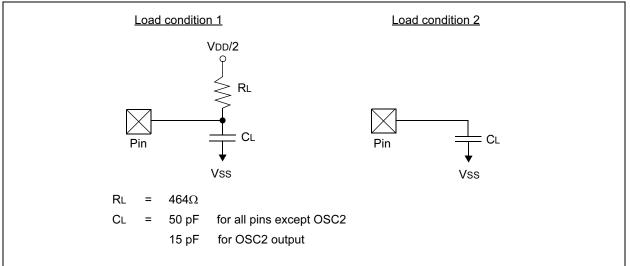
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

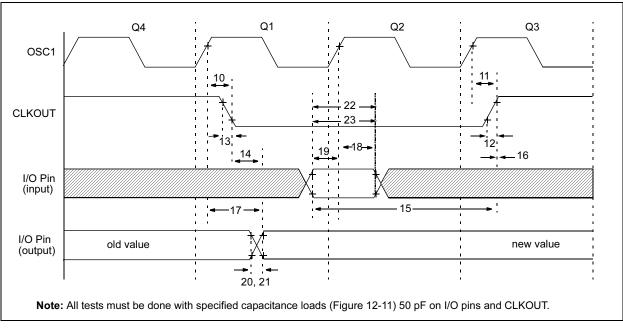
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

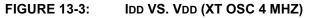
12.8 Timing Parameter Symbology

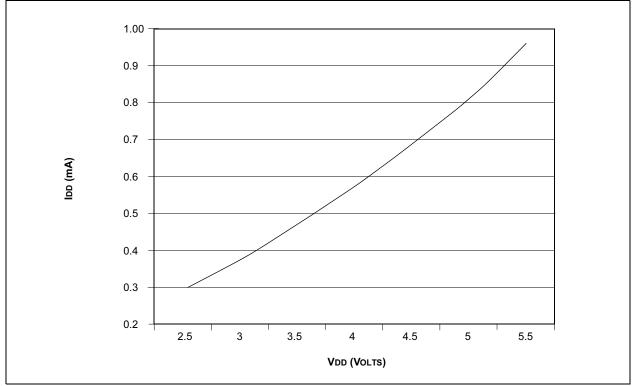

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

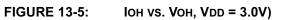

2. TppS

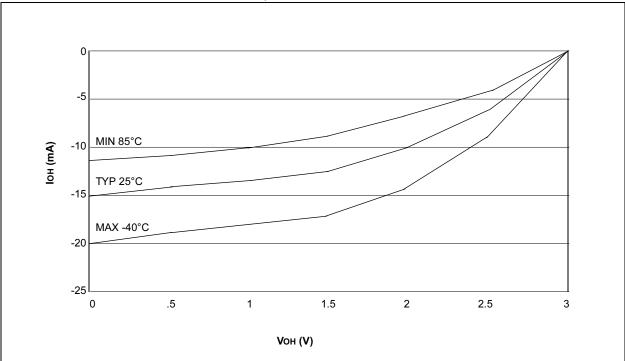
2. Tpp3						
т						
F	Frequency	Т	Time			
Lowercase subscripts (pp) and their meanings:						
рр						
ck	CLKOUT	osc	OSC1			
io	I/O port	t0	ТОСКІ			
mc	MCLR					
Uppercase letters and their meanings:						
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (Hi-impedance)	V	Valid			
L	Low	Z	Hi-Impedance			

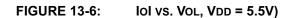

FIGURE 12-11: LOAD CONDITIONS

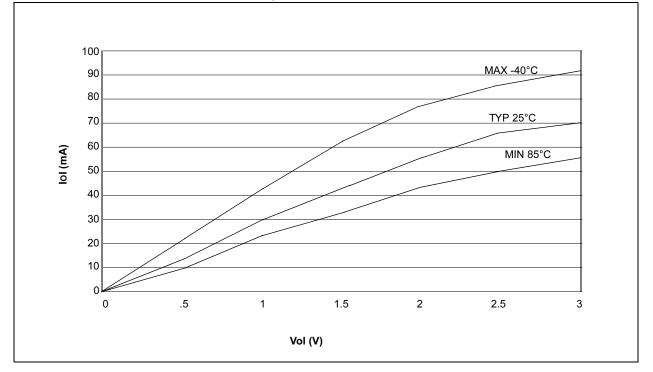


PIC16C62X

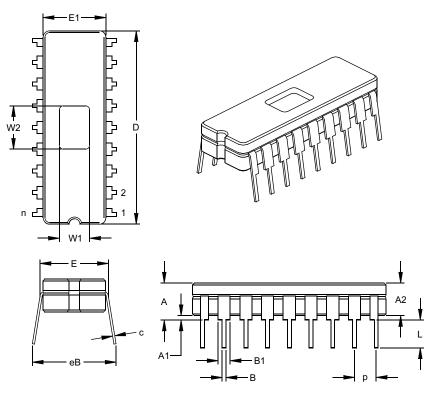








PIC16C62X



14.0 PACKAGING INFORMATION

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

	Units	INCHES*			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.023	.030	0.38	0.57	0.76	
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26	
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49	
Overall Length	D	.880	.900	.920	22.35	22.86	23.37	
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52	
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53	
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80	
Window Width	W1	.130	.140	.150	3.30	3.56	3.81	
Window Length	W2	.190	.200	.210	4.83	5.08	5.33	

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.