



Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 20MHz                                                                        |
| Connectivity               | -                                                                            |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                             |
| Number of I/O              | 13                                                                           |
| Program Memory Size        | 896B (512 x 14)                                                              |
| Program Memory Type        | ОТР                                                                          |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 96 x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | External                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                               |
| Supplier Device Package    | 18-SOIC                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c620at-20i-so |

#### **Table of Contents**

| 3.0       Architectural Overview       9         4.0       Memory Organization       13         5.0       I/O Ports       25         6.0       Timer0 Module       31         7.0       Comparator Module       37         8.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109                                                                                                                                                                                                                                                | 1.0     | General Description                 | 5    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------|------|
| 4.0       Memory Organization       13         5.0       I/O Ports       25         6.0       Timer0 Module       31         7.0       Comparator Module       37         8.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124 | 2.0     | PIC16C62X Device Varieties          | 7    |
| 5.0       I/O Ports       25         6.0       Timer0 Module       31         7.0       Comparator Module       37         8.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                | 3.0     | Architectural Overview              | 9    |
| 5.0       Timer0 Module       31         7.0       Comparator Module       37         8.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                     | 4.0     | Memory Organization                 | . 13 |
| 7.0       Comparator Module       37         3.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                              | 5.0     | I/O Ports                           | 25   |
| 3.0       Voltage Reference Module       43         9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                           | 3.0     | Timer0 Module                       | 31   |
| 9.0       Special Features of the CPU       45         10.0       Instruction Set Summary       61         11.0       Development Support       75         12.0       Electrical Specifications       81         13.0       Device Characterization Information       109         14.0       Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                               | 7.0     | Comparator Module                   | 37   |
| 10.0 Instruction Set Summary       61         11.0 Development Support       75         12.0 Electrical Specifications       81         13.0 Device Characterization Information       109         14.0 Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                    | 3.0     | Voltage Reference Module            | 43   |
| 11.0 Development Support       75         12.0 Electrical Specifications       81         13.0 Device Characterization Information       109         14.0 Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                  | 9.0     | Special Features of the CPU         | 45   |
| 12.0 Electrical Specifications       81         13.0 Device Characterization Information       109         14.0 Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0    |                                     |      |
| 13.0 Device Characterization Information       109         14.0 Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.0    | Development Support                 | 75   |
| 14.0 Packaging Information       113         Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.0    | Electrical Specifications           | . 81 |
| Appendix A: Enhancements       119         Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.0    | Device Characterization Information | 109  |
| Appendix B: Compatibility       119         ndex       121         On-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.0    |                                     |      |
| ndex       121         Dn-Line Support       123         Systems Information and Upgrade Hot Line       123         Reader Response       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                     |      |
| Dn-Line Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Append  | dix B: Compatibility                | 119  |
| Systems Information and Upgrade Hot Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                     |      |
| Reader Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | On-Line | e Support                           | 123  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | System  | ns Information and Upgrade Hot Line | 123  |
| Product Identification System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reader  | Response                            | 124  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊃roduc  | t Identification System             | 125  |

### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

#### **Errata**

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

### **Customer Notification System**

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

### 1.0 GENERAL DESCRIPTION

The PIC16C62X devices are 18 and 20-Pin ROM/EPROM-based members of the versatile PICmicro® family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.

All PICmicro microcontrollers employ an advanced RISC architecture. The PIC16C62X devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C620A, PIC16C621A and PIC16CR620A have 96 bytes of RAM. The PIC16C622(A) has 128 bytes of RAM. Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16C62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16C62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost effective One-Time-Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C62X midrange microcontroller families.

A simplified block diagram of the PIC16C62X is shown in Figure 3-1.

The PIC16C62X series fits perfectly in applications ranging from battery chargers to low power remote sensors. The EPROM technology makes

customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C62X very versatile.

### 1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to PIC16C62X family of devices (Appendix B). The PIC16C62X family fills the niche for users wanting to migrate up from the PIC16C5X family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

### 1.2 Development Support

The PIC16C62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. Third Party "C" compilers are also available.

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

| File<br>Address                                   |                     |                     | File<br>Address |  |  |  |
|---------------------------------------------------|---------------------|---------------------|-----------------|--|--|--|
| 00h                                               | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h             |  |  |  |
| 01h                                               | TMR0                | OPTION              | 81h             |  |  |  |
| 02h                                               | PCL                 | PCL                 | 82h             |  |  |  |
| 03h                                               | STATUS              | STATUS              | 83h             |  |  |  |
| 04h                                               | FSR                 | FSR                 | 84h             |  |  |  |
| 05h                                               | PORTA               | TRISA               | 85h             |  |  |  |
| 06h                                               | PORTB               | TRISB               | 86h             |  |  |  |
| 07h                                               |                     |                     | 87h             |  |  |  |
| 08h                                               |                     |                     | 88h             |  |  |  |
| 09h                                               |                     |                     | 89h             |  |  |  |
| 0Ah                                               | PCLATH              | PCLATH              | 8Ah             |  |  |  |
| 0Bh                                               | INTCON              | INTCON              | 8Bh             |  |  |  |
| 0Ch                                               | PIR1                | PIE1                | 8Ch             |  |  |  |
| 0Dh                                               |                     |                     | 8Dh             |  |  |  |
| 0Eh                                               |                     | PCON                | 8Eh             |  |  |  |
| 0Fh                                               |                     |                     | 8Fh             |  |  |  |
| 10h                                               |                     |                     | 90h             |  |  |  |
| 11h                                               |                     |                     | 91h             |  |  |  |
| 12h                                               |                     |                     | 92h             |  |  |  |
| 13h                                               |                     |                     | 93h             |  |  |  |
| 14h                                               |                     |                     | 94h             |  |  |  |
| 15h                                               |                     |                     | 95h             |  |  |  |
| 16h                                               |                     |                     | 96h             |  |  |  |
| 17h                                               |                     |                     | 97h             |  |  |  |
| 18h                                               |                     |                     | 98h             |  |  |  |
| 19h                                               |                     |                     | 99h             |  |  |  |
| 1Ah                                               |                     |                     | 9Ah             |  |  |  |
| 1Bh                                               |                     |                     | 9Bh             |  |  |  |
| 1Ch                                               |                     |                     | 9Ch             |  |  |  |
| 1Dh                                               |                     |                     | 9Dh             |  |  |  |
| 1Eh                                               |                     |                     | 9Eh             |  |  |  |
| 1Fh                                               | CMCON               | VRCON               | 9Fh             |  |  |  |
| 20h                                               | General<br>Purpose  |                     | A0h             |  |  |  |
| 6Fh                                               | Register            |                     |                 |  |  |  |
| 70h                                               |                     |                     |                 |  |  |  |
|                                                   |                     |                     |                 |  |  |  |
|                                                   |                     |                     |                 |  |  |  |
|                                                   |                     |                     |                 |  |  |  |
| 7Fh                                               |                     |                     | FFh             |  |  |  |
| 7111                                              | Bank 0              | Bank 1              |                 |  |  |  |
| Unimplemented data memory locations, read as '0'. |                     |                     |                 |  |  |  |
| Note 1: Not a physical register.                  |                     |                     |                 |  |  |  |
|                                                   |                     |                     |                 |  |  |  |

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16C622

| File<br>Address | 3                                                 |                     | File<br>Address |  |  |  |  |
|-----------------|---------------------------------------------------|---------------------|-----------------|--|--|--|--|
| 00h             | INDF <sup>(1)</sup>                               | INDF <sup>(1)</sup> | 80h             |  |  |  |  |
| 01h             | TMR0                                              | OPTION              | 81h             |  |  |  |  |
| 02h             | PCL                                               | PCL                 | 82h             |  |  |  |  |
| 03h             | STATUS                                            | STATUS              | 83h             |  |  |  |  |
| 04h             | FSR                                               | FSR                 | 84h             |  |  |  |  |
| 05h             | PORTA                                             | TRISA               | 85h             |  |  |  |  |
| 06h             | PORTB                                             | TRISB               | 86h             |  |  |  |  |
| 07h             |                                                   |                     | 87h             |  |  |  |  |
| 08h             |                                                   |                     | 88h             |  |  |  |  |
| 09h             |                                                   |                     | 89h             |  |  |  |  |
| 0Ah             | PCLATH                                            | PCLATH              | 8Ah             |  |  |  |  |
| 0Bh             | INTCON                                            | INTCON              | 8Bh             |  |  |  |  |
| 0Ch             | PIR1                                              | PIE1                | 8Ch             |  |  |  |  |
| 0Dh             |                                                   |                     | 8Dh             |  |  |  |  |
| 0Eh             |                                                   | PCON                | 8Eh             |  |  |  |  |
| 0Fh             |                                                   |                     | 8Fh             |  |  |  |  |
| 10h             |                                                   |                     | 90h             |  |  |  |  |
| 11h             |                                                   |                     | 91h             |  |  |  |  |
| 12h             |                                                   |                     | 92h             |  |  |  |  |
| 13h             |                                                   |                     | 93h             |  |  |  |  |
| 14h             |                                                   |                     | 94h             |  |  |  |  |
| 15h             |                                                   |                     | 95h             |  |  |  |  |
| 16h             |                                                   |                     | 96h             |  |  |  |  |
| 17h             |                                                   |                     | 97h             |  |  |  |  |
| 18h             |                                                   |                     | 98h             |  |  |  |  |
| 19h             |                                                   |                     | 99h             |  |  |  |  |
| 1Ah             |                                                   |                     | 9Ah             |  |  |  |  |
| 1Bh             |                                                   |                     | 9Bh             |  |  |  |  |
| 1Ch             |                                                   |                     | 9Ch             |  |  |  |  |
| 1Dh             |                                                   |                     | 9Dh             |  |  |  |  |
| 1Eh             |                                                   |                     | 9Eh             |  |  |  |  |
| 1Fh             | CMCON                                             | VRCON               | 9Fh             |  |  |  |  |
| 20h             |                                                   |                     | A0h             |  |  |  |  |
|                 | General                                           | General             | 7.011           |  |  |  |  |
|                 | Purpose<br>Register                               | Purpose<br>Register |                 |  |  |  |  |
|                 | register                                          | rtegister           | BFh             |  |  |  |  |
|                 |                                                   |                     | C0h             |  |  |  |  |
|                 |                                                   |                     |                 |  |  |  |  |
| [               |                                                   |                     | _               |  |  |  |  |
|                 |                                                   |                     |                 |  |  |  |  |
| 7Fh FFh         |                                                   |                     |                 |  |  |  |  |
| Bank 0 Bank 1   |                                                   |                     |                 |  |  |  |  |
|                 |                                                   |                     |                 |  |  |  |  |
| Unimp           | Unimplemented data memory locations, read as '0'. |                     |                 |  |  |  |  |
| Note 1:         | Not a physical re                                 | egister.            |                 |  |  |  |  |
|                 |                                                   |                     |                 |  |  |  |  |

#### 4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is cleared, indicating a brown-out has occurred. The BOR STATUS bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by programming BODEN bit in the Configuration word).

### REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-----|-----|-----|-------|-------|
| _     | _   | _   | _   | _   | _   | POR   | BOR   |
| bit 7 |     |     |     |     |     |       | bit 0 |

bit 7-2 **Unimplemented:** Read as '0'

bit 1 POR: Power-on Reset STATUS bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

- n = Value at POR

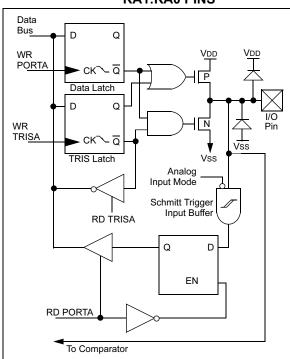
'1' = Bit is set

'0' = Bit is cleared x = Bit is unknown

#### **5.0 I/O PORTS**

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

### 5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

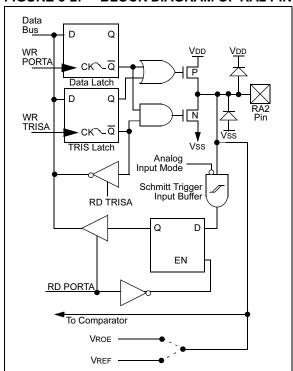
FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS



On RESET, the TRISA register is set to all inputs. The digital inputs are disabled and the comparator inputs are forced to ground to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

Note:


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

#### **EXAMPLE 5-1: INITIALIZING PORTA**

| CLRF  | PORTA       | ;Initialize PORTA by setting ;output data latches |
|-------|-------------|---------------------------------------------------|
| MOVLW | 0X07        | ;Turn comparators off and                         |
| MOVWF | CMCON       | <pre>;enable pins for I/O ;functions</pre>        |
| BSF   | STATUS, RPO | ;Select Bank1                                     |
| MOVLW | 0x1F        | ; Value used to initialize                        |
|       |             | ;data direction                                   |
| MOVWF | TRISA       | ;Set RA<4:0> as inputs                            |
|       |             | ;TRISA<7:5> are always                            |
|       |             | ;read as '0'.                                     |

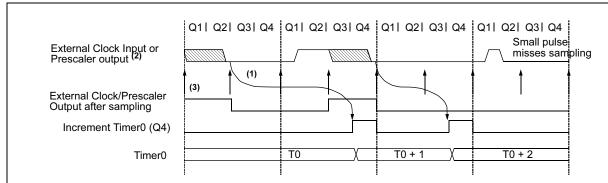
#### FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN



### 6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

### 6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

#### 6.2.2 TIMERO INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMERO TIMING WITH EXTERNAL CLOCK



- Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).

  Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.
  - 2: External clock if no prescaler selected, Prescaler output otherwise.
  - 3: The arrows indicate the points in time where sampling occurs.

### 6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to WDT.)

### EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

|          | ,            |                                                             |
|----------|--------------|-------------------------------------------------------------|
| 1.BCF    | STATUS, RPO  | ;Skip if already in ;Bank 0                                 |
| 2.CLRWDT |              | ;Clear WDT                                                  |
| 3.CLRF   | TMR0         | ;Clear TMR0 & Prescaler                                     |
| 4.BSF    | STATUS, RPO  | ;Bank 1                                                     |
| 5.MOVLW  | '00101111'b; | ;These 3 lines (5, 6, 7)                                    |
| 6.MOVWF  | OPTION       | <pre>;are required only if ;desired PS&lt;2:0&gt; are</pre> |
| 7.CLRWDT |              | ;000 or 001                                                 |
| 8.MOVLW  | '00101xxx'b  | ;Set Postscaler to                                          |
| 9.MOVWF  | OPTION       | ;desired WDT rate                                           |
| 10.BCF   | STATUS, RP0  | ;Return to Bank 0                                           |

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

### EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

| CLRWDT |             | ;Clear WDT and<br>;prescaler                              |
|--------|-------------|-----------------------------------------------------------|
| BSF    | STATUS, RPO | -                                                         |
| MOVLW  | b'xxxx0xxx' | ;Select TMR0, new<br>;prescale value and<br>;clock source |
| MOVWF  | OPTION_REG  |                                                           |
| BCF    | STATUS, RPO |                                                           |

#### TABLE 6-1: REGISTERS ASSOCIATED WITH TIMERO

| INDLE   | ABLE VII. REGISTERS ASSOCIATED WITH THILLIA |        |            |       |        |        |        |        |        |                 |                                 |
|---------|---------------------------------------------|--------|------------|-------|--------|--------|--------|--------|--------|-----------------|---------------------------------|
| Address | Name                                        | Bit 7  | Bit 6      | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR | Value on<br>All Other<br>RESETS |
| 01h     | TMR0                                        | Timer0 | module reg | ister |        |        |        |        |        | xxxx xxxx       | uuuu uuuu                       |
| 0Bh/8Bh | INTCON                                      | GIE    | PEIE       | TOIE  | INTE   | RBIE   | TOIF   | INTF   | RBIF   | 0000 000x       | 0000 000u                       |
| 81h     | OPTION                                      | RBPU   | INTEDG     | TOCS  | T0SE   | PSA    | PS2    | PS1    | PS0    | 1111 1111       | 1111 1111                       |
| 85h     | TRISA                                       | _      | _          | _     | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 1 1111          | 1 1111                          |

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by TMR0 module.

TABLE 10-2: PIC16C62X INSTRUCTION SET

| Mnemonic,  |        | Description                  |       |     | 14-Bit | Opcode | )    | Status   | Notes |
|------------|--------|------------------------------|-------|-----|--------|--------|------|----------|-------|
| Operands   |        |                              |       | MSb |        |        | LSb  | Affected |       |
| BYTE-ORIE  | NTED F | FILE REGISTER OPERATIONS     |       |     |        |        |      |          |       |
| ADDWF      | f, d   | Add W and f                  | 1     | 00  | 0111   | dfff   | ffff | C,DC,Z   | 1,2   |
| ANDWF      | f, d   | AND W with f                 | 1     | 00  | 0101   | dfff   | ffff | Z        | 1,2   |
| CLRF       | f      | Clear f                      | 1     | 00  | 0001   | lfff   | ffff | Z        | 2     |
| CLRW       | -      | Clear W                      | 1     | 00  | 0001   | 0000   | 0011 | Z        |       |
| COMF       | f, d   | Complement f                 | 1     | 00  | 1001   | dfff   | ffff | Z        | 1,2   |
| DECF       | f, d   | Decrement f                  | 1     | 00  | 0011   | dfff   | ffff | Z        | 1,2   |
| DECFSZ     | f, d   | Decrement f, Skip if 0       | 1(2)  | 00  | 1011   | dfff   | ffff |          | 1,2,3 |
| INCF       | f, d   | Increment f                  | 1     | 00  | 1010   | dfff   | ffff | Z        | 1,2   |
| INCFSZ     | f, d   | Increment f, Skip if 0       | 1(2)  | 00  | 1111   | dfff   | ffff |          | 1,2,3 |
| IORWF      | f, d   | Inclusive OR W with f        | 1     | 00  | 0100   | dfff   | ffff | Z        | 1,2   |
| MOVF       | f, d   | Move f                       | 1     | 00  | 1000   | dfff   | ffff | Z        | 1,2   |
| MOVWF      | f      | Move W to f                  | 1     | 00  | 0000   | lfff   | ffff |          |       |
| NOP        | -      | No Operation                 | 1     | 00  | 0000   | 0xx0   | 0000 |          |       |
| RLF        | f, d   | Rotate Left f through Carry  | 1     | 00  | 1101   | dfff   | ffff | С        | 1,2   |
| RRF        | f, d   | Rotate Right f through Carry | 1     | 00  | 1100   | dfff   | ffff | С        | 1,2   |
| SUBWF      | f, d   | Subtract W from f            | 1     | 00  | 0010   | dfff   | ffff | C,DC,Z   | 1,2   |
| SWAPF      | f, d   | Swap nibbles in f            | 1     | 00  | 1110   | dfff   | ffff |          | 1,2   |
| XORWF      | f, d   | Exclusive OR W with f        | 1     | 00  | 0110   | dfff   | ffff | Z        | 1,2   |
| BIT-ORIENT | ED FIL | E REGISTER OPERATIONS        |       |     |        |        |      |          |       |
| BCF        | f, b   | Bit Clear f                  | 1     | 01  | 00bb   | bfff   | ffff |          | 1,2   |
| BSF        | f, b   | Bit Set f                    | 1     | 01  | 01bb   | bfff   | ffff |          | 1,2   |
| BTFSC      | f, b   | Bit Test f, Skip if Clear    | 1 (2) | 01  | 10bb   | bfff   | ffff |          | 3     |
| BTFSS      | f, b   | Bit Test f, Skip if Set      | 1 (2) | 01  | 11bb   | bfff   | ffff |          | 3     |
| LITERAL AN | ID CO  | NTROL OPERATIONS             |       |     |        |        |      |          |       |
| ADDLW      | k      | Add literal and W            | 1     | 11  | 111x   | kkkk   | kkkk | C,DC,Z   |       |
| ANDLW      | k      | AND literal with W           | 1     | 11  | 1001   | kkkk   | kkkk | Z        |       |
| CALL       | k      | Call subroutine              | 2     | 10  | 0kkk   | kkkk   | kkkk |          |       |
| CLRWDT     | -      | Clear Watchdog Timer         | 1     | 00  | 0000   | 0110   | 0100 | TO,PD    |       |
| GOTO       | k      | Go to address                | 2     | 10  | 1kkk   | kkkk   | kkkk |          |       |
| IORLW      | k      | Inclusive OR literal with W  | 1     | 11  | 1000   | kkkk   | kkkk | Z        |       |
| MOVLW      | k      | Move literal to W            | 1     | 11  | 00xx   | kkkk   | kkkk |          |       |
| RETFIE     | -      | Return from interrupt        | 2     | 00  | 0000   | 0000   | 1001 |          |       |
| RETLW      | k      | Return with literal in W     | 2     | 11  | 01xx   | kkkk   | kkkk |          |       |
| RETURN     | -      | Return from Subroutine       | 2     | 00  | 0000   | 0000   | 1000 |          |       |
| SLEEP      | -      | Go into Standby mode         | 1     | 00  | 0000   | 0110   | 0011 | TO,PD    |       |
| SUBLW      | k      | Subtract W from literal      | 1     | 11  | 110x   | kkkk   | kkkk | C,DC,Z   |       |
| XORLW      | k      | Exclusive OR literal with W  | 1     | 11  | 1010   | kkkk   | kkkk | Z        |       |

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

<sup>2:</sup> If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

<sup>3:</sup> If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

### 10.1 Instruction Descriptions

| ADDLW            | Add Literal and W                                                                                                 |       |              |      |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------|-------|--------------|------|--|--|--|
| Syntax:          | [label] ADDLW k                                                                                                   |       |              |      |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                               |       |              |      |  |  |  |
| Operation:       | (W) + k –                                                                                                         | → (W) |              |      |  |  |  |
| Status Affected: | C, DC, Z                                                                                                          |       |              |      |  |  |  |
| Encoding:        | 11                                                                                                                | 111x  | kkkk         | kkkk |  |  |  |
| Description:     | The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register. |       |              |      |  |  |  |
| Words:           | 1                                                                                                                 |       |              |      |  |  |  |
| Cycles:          | 1                                                                                                                 |       |              |      |  |  |  |
| Example          | ADDLW                                                                                                             | 0x15  |              |      |  |  |  |
|                  | After Inst                                                                                                        | W =   | 0x10<br>0x25 |      |  |  |  |

| ADDWF            | Add W a                                                                                                                                                            | nd f         |                              |      |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|------|--|--|--|
| Syntax:          | [ label ] ADDWF f,d                                                                                                                                                |              |                              |      |  |  |  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                 |              |                              |      |  |  |  |
| Operation:       | (W) + (f)                                                                                                                                                          | → (dest)     | )                            |      |  |  |  |
| Status Affected: | C, DC, Z                                                                                                                                                           |              |                              |      |  |  |  |
| Encoding:        | 00                                                                                                                                                                 | 0111         | dfff                         | ffff |  |  |  |
| Description:     | Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |              |                              |      |  |  |  |
| Words:           | 1                                                                                                                                                                  |              |                              |      |  |  |  |
| Cycles:          | 1                                                                                                                                                                  |              |                              |      |  |  |  |
| Example          | ADDWF                                                                                                                                                              | FSR,         | 0                            |      |  |  |  |
|                  | After Inst                                                                                                                                                         | W =<br>FSR = | 0x17<br>0xC2<br>0xD9<br>0xC2 |      |  |  |  |

| ANDLW            | AND Literal with W                                                                                            |                        |              |      |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------|------------------------|--------------|------|--|--|--|--|--|
| Syntax:          | [ label ] ANDLW k                                                                                             |                        |              |      |  |  |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                           |                        |              |      |  |  |  |  |  |
| Operation:       | (W) .AND                                                                                                      | $0. (k) \rightarrow 0$ | (W)          |      |  |  |  |  |  |
| Status Affected: | Z                                                                                                             |                        |              |      |  |  |  |  |  |
| Encoding:        | 11                                                                                                            | 1001                   | kkkk         | kkkk |  |  |  |  |  |
| Description:     | The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register. |                        |              |      |  |  |  |  |  |
| Words:           | 1                                                                                                             |                        |              |      |  |  |  |  |  |
| Cycles:          | 1                                                                                                             |                        |              |      |  |  |  |  |  |
| Example          | ANDLW                                                                                                         | 0x5F                   |              |      |  |  |  |  |  |
|                  | After Inst                                                                                                    | W =                    | 0xA3<br>0x03 |      |  |  |  |  |  |

| ANDWF            | AND W with f                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                  |                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Syntax:          | [ label ] ANDWF f,d                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Operands:        | $0 \le f \le 127$                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                  | $d \in [0,1]$                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| Operation:       | (W) .AND. (f) $\rightarrow$ (dest)                                                                                                                 |  |  |  |  |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Encoding:        | 00 0101 dfff ffff                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Description:     | AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |  |  |  |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Example          | ANDWF FSR, 1                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|                  | Before Instruction                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                  | W = 0x17                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|                  | FSR = 0xC2                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|                  | After Instruction                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                  | W = 0x17<br>FSR = 0x02                                                                                                                             |  |  |  |  |  |  |  |  |  |
|                  | FSR = 0x02                                                                                                                                         |  |  |  |  |  |  |  |  |  |

| SWAPF            | Swap Nibbles in f                                                                                                                                              |           |      |              |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|--------------|--|--|--|--|--|
| Syntax:          | [ label ]                                                                                                                                                      | SWAPF     | f,d  |              |  |  |  |  |  |
| Operands:        | $0 \le f \le 127$<br>d $\in [0,1]$                                                                                                                             |           |      |              |  |  |  |  |  |
| Operation:       | (f<3:0>) -<br>(f<7:4>) -                                                                                                                                       | •         | , ,  |              |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                           |           |      |              |  |  |  |  |  |
| Encoding:        | 00                                                                                                                                                             | 1110      | dfff | ffff         |  |  |  |  |  |
| Description:     | The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'. |           |      |              |  |  |  |  |  |
| Words:           | 1                                                                                                                                                              |           |      |              |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                              |           |      |              |  |  |  |  |  |
| Example          | SWAPF                                                                                                                                                          | REG,      | 0    |              |  |  |  |  |  |
|                  | Before In                                                                                                                                                      | struction |      |              |  |  |  |  |  |
|                  |                                                                                                                                                                | REG1      | = (  | 0xA5         |  |  |  |  |  |
|                  | After Instruction                                                                                                                                              |           |      |              |  |  |  |  |  |
|                  |                                                                                                                                                                | REG1<br>W |      | 0xA5<br>0x5A |  |  |  |  |  |

| TRIS             | Load TRIS Register                                                                                                                                                  |           |        |      |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------|--|--|--|--|--|
| Syntax:          | [ label ]                                                                                                                                                           | TRIS      | f      |      |  |  |  |  |  |
| Operands:        | $5 \leq f \leq 7$                                                                                                                                                   |           |        |      |  |  |  |  |  |
| Operation:       | $(W) \rightarrow TF$                                                                                                                                                | RIS regis | ter f; |      |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                |           |        |      |  |  |  |  |  |
| Encoding:        | 00                                                                                                                                                                  | 0000      | 0110   | Offf |  |  |  |  |  |
| Description:     | The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. |           |        |      |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                   |           |        |      |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                   |           |        |      |  |  |  |  |  |
| Example          |                                                                                                                                                                     |           |        |      |  |  |  |  |  |
|                  | To maintain upward compatibility with future PICmicro <sup>®</sup> products, do not use this instruction.                                                           |           |        |      |  |  |  |  |  |

| XORLW               | Exclusive OR Literal with W                                                                                       |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Syntax:             | [ label XORLW k<br>]                                                                                              |  |  |  |  |  |  |  |
| Operands:           | $0 \leq k \leq 255$                                                                                               |  |  |  |  |  |  |  |
| Operation:          | (W) .XOR. $k \rightarrow (W)$                                                                                     |  |  |  |  |  |  |  |
| Status Affected:    | Z                                                                                                                 |  |  |  |  |  |  |  |
| Encoding:           | 11 1010 kkkk kkkk                                                                                                 |  |  |  |  |  |  |  |
| Description: Words: | The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register. |  |  |  |  |  |  |  |
| Cycles:             | 1                                                                                                                 |  |  |  |  |  |  |  |
| Example:            | XORLW 0xAF                                                                                                        |  |  |  |  |  |  |  |
|                     | Before Instruction                                                                                                |  |  |  |  |  |  |  |
|                     | W = 0xB5                                                                                                          |  |  |  |  |  |  |  |
|                     | After Instruction                                                                                                 |  |  |  |  |  |  |  |
|                     | W = 0x1A                                                                                                          |  |  |  |  |  |  |  |
| XORWE               | Exclusive OR W with f                                                                                             |  |  |  |  |  |  |  |

| XORWF            | Exclusive OR W with f                                                                                                                                                       |                         |       |   |      |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---|------|--|--|--|--|--|
| Syntax:          | [ label ] XORWF f,d                                                                                                                                                         |                         |       |   |      |  |  |  |  |  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                          |                         |       |   |      |  |  |  |  |  |
| Operation:       | (W) .XOF                                                                                                                                                                    | $R. (f) \rightarrow (e$ | dest) |   |      |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                           |                         |       |   |      |  |  |  |  |  |
| Encoding:        | 00                                                                                                                                                                          | 0110                    | dff   | f | ffff |  |  |  |  |  |
| Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |                         |       |   |      |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                           |                         |       |   |      |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                           |                         |       |   |      |  |  |  |  |  |
| Example          | XORWF                                                                                                                                                                       | REG                     | 1     |   |      |  |  |  |  |  |
|                  | Before In                                                                                                                                                                   | struction               |       |   |      |  |  |  |  |  |
|                  | 0xA<br>0xE                                                                                                                                                                  | ••                      |       |   |      |  |  |  |  |  |
|                  | After Inst                                                                                                                                                                  | ruction                 |       |   |      |  |  |  |  |  |
|                  | REG = 0x1A<br>W = 0xB5                                                                                                                                                      |                         |       |   |      |  |  |  |  |  |

## 11.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft<sup>®</sup> Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

# 11.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

### 11.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low cost, run-time development tool, connecting to the host PC via an RS-232 or high speed USB interface. This tool is based on the FLASH PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming™ (ICSP™) protocol, offers cost effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.

### 11.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify, and program PICmicro devices without a PC connection. It can also set code protection in this mode.

## 11.13 PICSTART Plus Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

# 12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

| PIC16C                                                           |                                                          |                                                                                                                                                                                                                                                                                                         | Standard Operating Conditions (unless otherwise stated)  Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial and -40°C ≤ TA ≤ +125°C for extended  Standard Operating Conditions (unless otherwise stated)  Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial and -40°C ≤ TA ≤ +125°C for extended |                                    |                                                          |                                              |                                                                                                                         |  |  |
|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                  | ı                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                          | V <sub>DD</sub> ran                          | ge is the PIC16C62X range.                                                                                              |  |  |
| Param . No.                                                      | Sym                                                      | Characteristic                                                                                                                                                                                                                                                                                          | Min                                                                                                                                                                                                                                                                                                                                                                                  | Тур†                               | Max                                                      | Units                                        | Conditions                                                                                                              |  |  |
| D022<br>D022A<br>D023<br>D023A<br>D022<br>D022A<br>D023<br>D023A | ΔIWDT  ΔIBOR ΔICOM P  ΔIVREF ΔIWDT ΔIBOR ΔICOM P  ΔIVREF | WDT Current <sup>(5)</sup> Brown-out Reset Current <sup>(5)</sup> Comparator Current for each Comparator <sup>(5)</sup> VREF Current <sup>(5)</sup> WDT Current <sup>(5)</sup> Brown-out Reset Current <sup>(5)</sup> Comparator Current for each Comparator <sup>(5)</sup> VREF Current <sup>(5)</sup> |                                                                                                                                                                                                                                                                                                                                                                                      | 6.0<br>350<br>—<br>6.0<br>350<br>— | 20<br>25<br>425<br>100<br>300<br>15<br>425<br>100<br>300 | ДА<br>ДА<br>ДА<br>ДА<br>ДА<br>ДА<br>ДА<br>ДА | VDD=4.0V (125°C) BOD enabled, VDD = 5.0V VDD = 4.0V  VDD = 4.0V  VDD=3.0V BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V |  |  |
| 1A                                                               | Fosc                                                     | LP Oscillator Operating Frequency<br>RC Oscillator Operating Frequency<br>XT Oscillator Operating Frequency<br>HS Oscillator Operating Frequency                                                                                                                                                        | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                     |                                    | 200<br>4<br>4<br>20                                      | kHz<br>MHz<br>MHz<br>MHz                     | All temperatures All temperatures All temperatures All temperatures                                                     |  |  |
| 1A                                                               | Fosc                                                     | LP Oscillator Operating Frequency<br>RC Oscillator Operating Frequency<br>XT Oscillator Operating Frequency<br>HS Oscillator Operating Frequency                                                                                                                                                        | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                     | _<br>_<br>_<br>_                   | 200<br>4<br>4<br>20                                      | kHz<br>MHz<br>MHz<br>MHz                     | All temperatures All temperatures All temperatures All temperatures                                                     |  |  |

- \* These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended)
PIC16C62XA-20 (Commercial, Industrial, Extended)
PIC16LC62XA-04 (Commercial, Industrial, Extended)

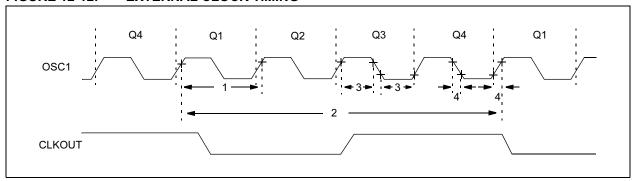
| PIC16C62XA    |      |                                              |       |      |      |       |                                              |  |  |  |  |
|---------------|------|----------------------------------------------|-------|------|------|-------|----------------------------------------------|--|--|--|--|
| Param.<br>No. | Sym  | Characteristic                               | Min   | Тур† | Max  | Units | Conditions                                   |  |  |  |  |
| D001          | VDD  | Supply Voltage                               | 3.0   | _    | 5.5  | V     | See Figures 12-1, 12-2, 12-3, 12-4, and 12-5 |  |  |  |  |
| D001          | VDD  | Supply Voltage                               | 2.5   | _    | 5.5  | V     | See Figures 12-1, 12-2, 12-3, 12-4, and 12-5 |  |  |  |  |
| D002          | VDR  | RAM Data Retention<br>Voltage <sup>(1)</sup> | _     | 1.5* | _    | V     | Device in SLEEP mode                         |  |  |  |  |
| D002          | VDR  | RAM Data Retention Voltage <sup>(1)</sup>    | _     | 1.5* | _    | V     | Device in SLEEP mode                         |  |  |  |  |
| D003          | VPOR | VDD start voltage to ensure Power-on Reset   | _     | Vss  | _    | ٧     | See section on Power-on Reset for details    |  |  |  |  |
| D003          | VPOR | VDD start voltage to ensure Power-on Reset   | _     | Vss  | _    | ٧     | See section on Power-on Reset for details    |  |  |  |  |
| D004          | SVDD | VDD rise rate to ensure<br>Power-on Reset    | 0.05* | _    | _    | V/ms  | See section on Power-on Reset for details    |  |  |  |  |
| D004          | SVDD | VDD rise rate to ensure<br>Power-on Reset    | 0.05* | _    | _    | V/ms  | See section on Power-on Reset for details    |  |  |  |  |
| D005          | VBOR | Brown-out Detect Voltage                     | 3.7   | 4.0  | 4.35 | V     | BOREN configuration bit is cleared           |  |  |  |  |
| D005          | VBOR | Brown-out Detect Voltage                     | 3.7   | 4.0  | 4.35 | V     | BOREN configuration bit is cleared           |  |  |  |  |

- \* These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.


- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
- 5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 6: Commercial temperature range only.

| PIC16CR62XA-04 Operating Conditions (unless otherwise stated)  Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended |                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PIC16LCR62XA-04                                                                                                                                                                                                                                                                                                            | Standard Operating Conditions (unless otherwise stated)  Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial and $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended |  |  |  |  |  |
| Param. Sym Characteristic No.                                                                                                                                                                                                                                                                                              | Min Typ† Max Units Conditions                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

- \* These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
    - The test conditions for all IDD measurements in Active Operation mode are:
    - $\underline{\mathsf{OSC1}}$  = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,
    - MCLR = VDD; WDT enabled/disabled as specified.
  - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
  - **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.
  - 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
  - 6: Commercial temperature range only.

### 12.9 Timing Diagrams and Specifications

FIGURE 12-12: EXTERNAL CLOCK TIMING



**TABLE 12-3: EXTERNAL CLOCK TIMING REQUIREMENTS** 

| Parameter<br>No. | Sym   | Characteristic                          | Min  | Тур†   | Max    | Units | Conditions                         |
|------------------|-------|-----------------------------------------|------|--------|--------|-------|------------------------------------|
| 1A               | Fosc  | External CLKIN Frequency <sup>(1)</sup> | DC   | _      | 4      | MHz   | XT and RC Osc mode, VDD=5.0V       |
|                  |       |                                         | DC   | _      | 20     | MHz   | HS Osc mode                        |
|                  |       |                                         | DC   | _      | 200    | kHz   | LP Osc mode                        |
|                  |       | Oscillator Frequency <sup>(1)</sup>     | DC   | _      | 4      | MHz   | RC Osc mode, VDD=5.0V              |
|                  |       |                                         | 0.1  | _      | 4      | MHz   | XT Osc mode                        |
|                  |       |                                         | 1    | _      | 20     | MHz   | HS Osc mode                        |
|                  |       |                                         | DC   | _      | 200    | kHz   | LP Osc mode                        |
| 1                | Tosc  | External CLKIN Period <sup>(1)</sup>    | 250  | _      | _      | ns    | XT and RC Osc mode                 |
|                  |       |                                         | 50   | _      | _      | ns    | HS Osc mode                        |
|                  |       |                                         | 5    | _      | _      | μS    | LP Osc mode                        |
|                  |       | Oscillator Period <sup>(1)</sup>        | 250  | _      | _      | ns    | RC Osc mode                        |
|                  |       |                                         | 250  | _      | 10,000 | ns    | XT Osc mode                        |
|                  |       |                                         | 50   | _      | 1,000  | ns    | HS Osc mode                        |
|                  |       |                                         | 5    | _      | _      | μS    | LP Osc mode                        |
| 2                | TCY   | Instruction Cycle Time <sup>(1)</sup>   | 1.0  | Fosc/4 | DC     | μS    | Tcys=Fosc/4                        |
| 3*               | TosL, | External Clock in (OSC1) High or        | 100* | _      | _      | ns    | XT oscillator, Tosc L/H duty cycle |
|                  | TosH  | Low Time                                | 2*   | _      | _      | μS    | LP oscillator, Tosc L/H duty cycle |
|                  |       |                                         | 20*  | _      | _      | ns    | HS oscillator, Tosc L/H duty cycle |
| 4*               | TosR, | External Clock in (OSC1) Rise or        | 25*  | _      | _      | ns    | XT oscillator                      |
|                  | TosF  | Fall Time                               | 50*  | _      | _      | ns    | LP oscillator                      |
|                  |       |                                         | 15*  | _      | _      | ns    | HS oscillator                      |

<sup>2: \*</sup> These parameters are characterized but not tested.

<sup>3: †</sup> Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 12-14: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

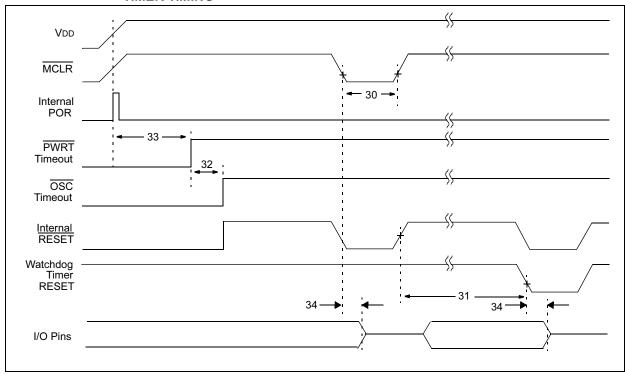



FIGURE 12-15: BROWN-OUT RESET TIMING

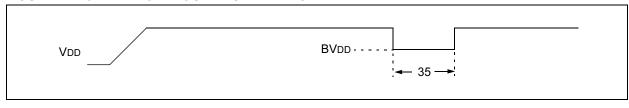



TABLE 12-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

| Parameter No. | Sym   | Characteristic                                | Min  | Тур†      | Max  | Units | Conditions                            |
|---------------|-------|-----------------------------------------------|------|-----------|------|-------|---------------------------------------|
| 30            | TmcL  | MCLR Pulse Width (low)                        | 2000 | _         | _    | ns    | -40° to +85°C                         |
| 31            | Twdt  | Watchdog Timer Time-out Period (No Prescaler) | 7*   | 18        | 33*  | ms    | VDD = 5.0V, -40° to +85°C             |
| 32            | Tost  | Oscillation Start-up Timer Period             | _    | 1024 Tosc | _    | _     | Tosc = OSC1 period                    |
| 33            | Tpwrt | Power-up Timer Period                         | 28*  | 72        | 132* | ms    | V <sub>DD</sub> = 5.0V, -40° to +85°C |
| 34            | Tıoz  | I/O hi-impedance from MCLR low                |      | _         | 2.0  | μS    |                                       |
| 35            | TBOR  | Brown-out Reset Pulse Width                   | 100* | _         | _    | μS    | $3.7V \le VDD \le 4.3V$               |

<sup>\*</sup> These parameters are characterized but not tested.

<sup>†</sup> Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-16: TIMER0 CLOCK TIMING

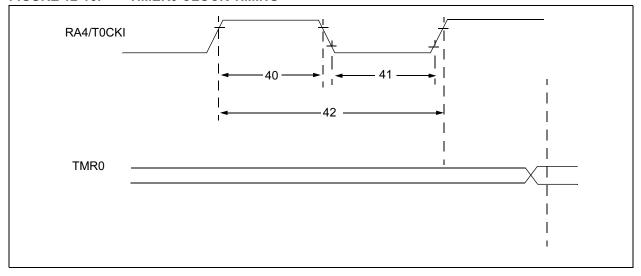



TABLE 12-6: TIMERO CLOCK REQUIREMENTS

| Parameter<br>No. | Sym  | Characteristic         |                | Min            | Тур† | Max | Units | Conditions                            |
|------------------|------|------------------------|----------------|----------------|------|-----|-------|---------------------------------------|
| 40               | Tt0H | T0CKI High Pulse Width | No Prescaler   | 0.5 Tcy + 20*  | _    | _   | ns    |                                       |
|                  |      |                        | With Prescaler | 10*            | _    | _   | ns    |                                       |
| 41               | Tt0L | T0CKI Low Pulse Width  | No Prescaler   | 0.5 Tcy + 20*  | _    | _   | ns    |                                       |
|                  |      |                        | With Prescaler | 10*            | _    | _   | ns    |                                       |
| 42               | Tt0P | T0CKI Period           |                | TCY + 40*<br>N | _    | _   | ns    | N = prescale value<br>(1, 2, 4,, 256) |

These parameters are characterized but not tested.

<sup>†</sup> Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

### 13.0 DEVICE CHARACTERIZATION INFORMATION

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution, while "max" or "min" represents (mean +  $3\sigma$ ) and (mean –  $3\sigma$ ) respectively, where  $\sigma$  is standard deviation.

FIGURE 13-1: IDD VS. FREQUENCY (XT MODE, VDD = 5.5V)

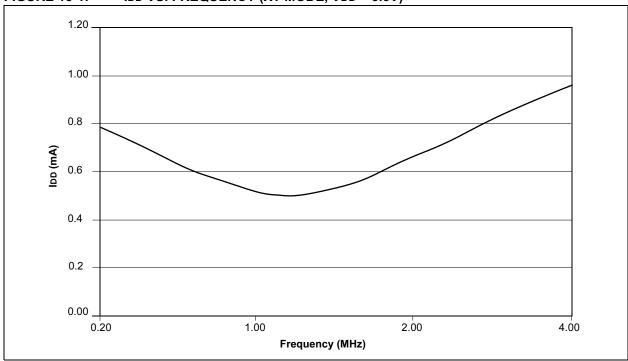
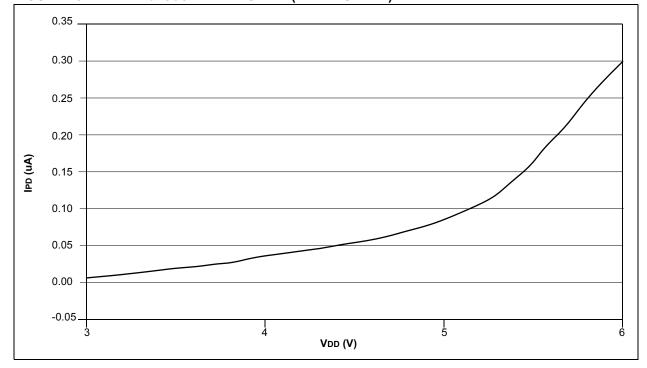
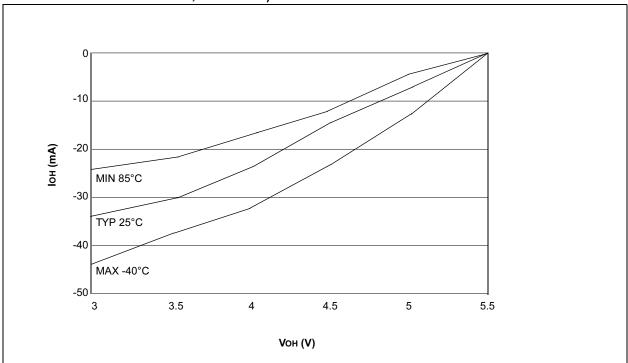





FIGURE 13-2: PIC16C622A IPD VS. VDD (WDT DISABLE)







| INDEX                                  |        | 1                                                 |    |
|----------------------------------------|--------|---------------------------------------------------|----|
| A                                      |        | I/O Ports                                         | 25 |
| ADDLW Instruction                      | 63     | I/O Programming Considerations                    | 30 |
| ADDWF Instruction                      |        | ID Locations                                      | 60 |
| ANDLW Instruction                      |        | INCF Instruction                                  | 67 |
| ANDWF Instruction                      |        | INCFSZ Instruction                                |    |
| Architectural Overview                 |        | In-Circuit Serial Programming                     |    |
| Assembler                              |        | Indirect Addressing, INDF and FSR Registers       |    |
| MPASM Assembler                        | 75     | Instruction Flow/Pipelining                       | 12 |
| В                                      |        | Instruction Set                                   |    |
| =                                      |        | ADDLW                                             |    |
| BCF Instruction                        | 64     | ADDWF                                             |    |
| Block Diagram                          | 0.4    | ANDLW                                             |    |
| TIMERO                                 |        | ANDWF                                             |    |
| TMR0/WDT PRESCALER                     |        | BCF                                               |    |
| Brown-Out Detect (BOD)                 |        | BSF                                               |    |
| BSF Instruction                        |        | BTFSC                                             |    |
| BTFSC InstructionBTFSS Instruction     |        | BTFSS                                             |    |
|                                        | 65     | CALL                                              |    |
| C                                      |        | CLRF                                              |    |
| C Compilers                            |        | CLRW                                              |    |
| MPLAB C17                              | 76     | CLRWDT                                            |    |
| MPLAB C18                              | 76     | COMF                                              |    |
| MPLAB C30                              | 76     | DECF<br>DECFSZ                                    |    |
| CALL Instruction                       |        | GOTO                                              |    |
| Clocking Scheme/Instruction Cycle      | 12     | INCF                                              |    |
| CLRF Instruction                       | 65     | INCFSZ                                            |    |
| CLRW Instruction                       | 66     | IORLW                                             |    |
| CLRWDT Instruction                     | 66     | IORWF                                             |    |
| Code Protection                        |        | MOVF                                              |    |
| COMF Instruction                       |        | MOVLW                                             |    |
| Comparator Configuration               |        | MOVWF                                             |    |
| Comparator Interrupts                  |        | NOP                                               |    |
| Comparator Module                      |        | OPTION                                            |    |
| Comparator Operation                   |        | RETFIE                                            |    |
| Comparator Reference                   |        | RETLW                                             |    |
| Configuration Bits                     |        | RETURN                                            |    |
| Configuring the Voltage Reference      |        | RLF                                               |    |
| Crystal Operation                      | 47     | RRF                                               | 71 |
| D                                      |        | SLEEP                                             | 71 |
| Data Memory Organization               | 14     | SUBLW                                             | 72 |
| DC Characteristics87                   | 7, 101 | SUBWF                                             | 72 |
| PIC16C717/770/77188, 89, 90, 91, 96, 9 | 97, 98 | SWAPF                                             | 73 |
| DECF Instruction                       | 66     | TRIS                                              | 73 |
| DECFSZ Instruction                     | 67     | XORLW                                             | 73 |
| Demonstration Boards                   |        | XORWF                                             | 73 |
| PICDEM 1                               | 78     | Instruction Set Summary                           | 61 |
| PICDEM 17                              |        | INT Interrupt                                     |    |
| PICDEM 18R PIC18C601/801               |        | INTCON Register                                   | 20 |
| PICDEM 2 Plus                          |        | Interrupts                                        |    |
| PICDEM 3 PIC16C92X                     |        | IORLW Instruction                                 |    |
| PICDEM 4                               |        | IORWF Instruction                                 | 68 |
| PICDEM LIN PIC16C43X                   |        | M                                                 |    |
| PICDEM USB PIC16C7X5                   |        | MOVF Instruction                                  | 69 |
| PICDEM.net Internet/Ethernet           |        | MOVLW Instruction                                 |    |
| Development Support                    | /5     | MOVWF Instruction                                 |    |
| E                                      |        | MPLAB ASM30 Assembler, Linker, Librarian          |    |
| Errata                                 | 3      | MPLAB ICD 2 In-Circuit Debugger                   |    |
| Evaluation and Programming Tools       |        | MPLAB ICE 2000 High Performance Universal         | -  |
| External Crystal Oscillator Circuit    |        | In-Circuit Emulator                               | 77 |
| G                                      |        | MPLAB ICE 4000 High Performance Universal         | -  |
|                                        | 4.4    | In-Circuit Emulator                               | 77 |
| General purpose Register File          |        | MPLAB Integrated Development Environment Software |    |
| OOTO ITISTRUCTION                      | 01     | MPLINK Object Linker/MPLIB Object Librarian       |    |