

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C62X

EPROM-Based 8-Bit CMOS Microcontrollers

Devices included in this data sheet:

Referred to collectively as PIC16C62X.

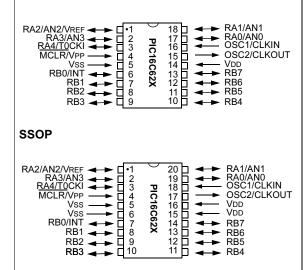
- PIC16C620 PIC16C620A
- PIC16C621 PIC16C621A
- PIC16C622 PIC16C622A
- PIC16CR620A

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
 - DC 40 MHz clock input
 - DC 100 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C620	512	80
PIC16C620A	512	96
PIC16CR620A	512	96
PIC16C621	1K	80
PIC16C621A	1K	96
PIC16C622	2K	128
PIC16C622A	2K	128

· Interrupt capability


- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

Special Microcontroller Features:

- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

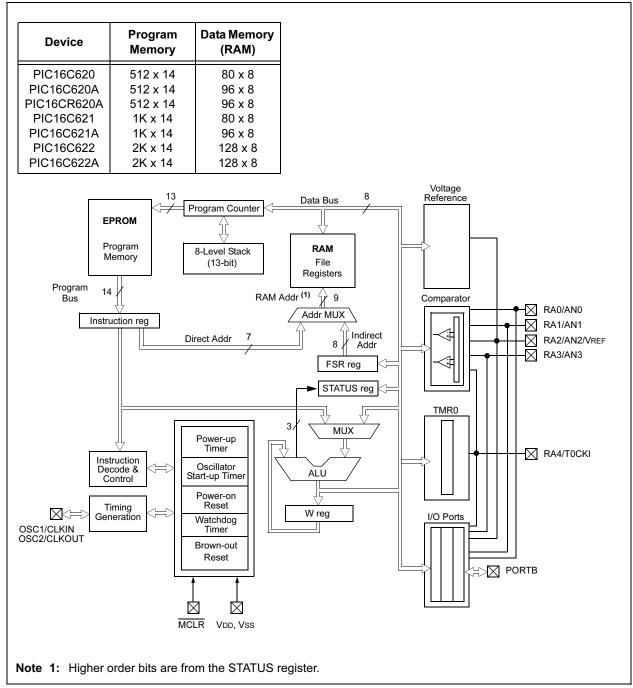
CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- · Wide operating range
 - 2.5V to 5.5V
- Commercial, industrial and extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical @ 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	EPROM Program Memory (x14 words)	512	512	512	1K	1K	2К	2К
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.


Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

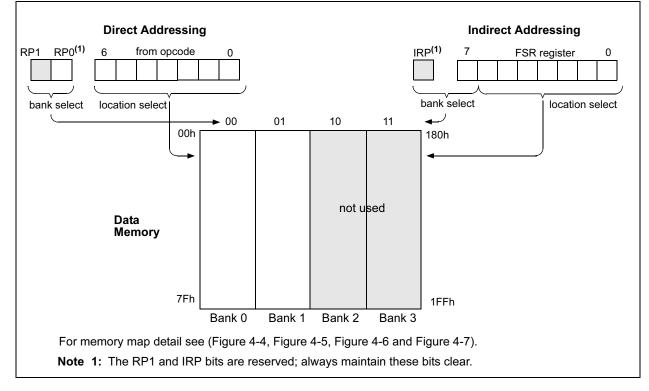
2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

FIGURE 3-1: BLOCK DIAGRAM

4.4 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-9. However, IRP is not used in the PIC16C62X.

A simple program to clear RAM location 20h-7Fh using indirect addressing is shown in Example 4-1.

EXAN	IPLE 4-	1: INC	DIRECT ADDRESSING
	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,7	;all done?
	goto	NEXT	;no clear next
			;yes continue
CONTI	NUE:		

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING PIC16C62X

TABLE 5-1:PORTA FUNCTIONS

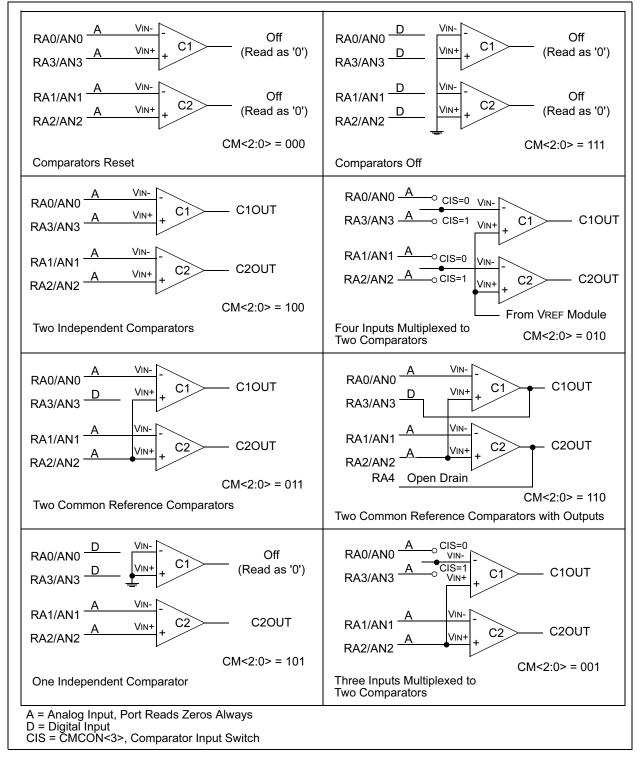
Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input
RA1/AN1	bit1	ST	Input/output or comparator input
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output
RA3/AN3	bit3	ST	Input/output or comparator input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA			_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

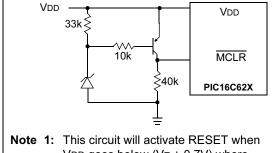

Note: Shaded bits are not used by PORTA.

7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.



PIC16C62X

FIGURE 9-11: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP) Vdd Vdd D R R1 MCLR PIC16C62X С Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. **2:** < 40 k Ω is recommended to make sure that voltage drop across R does not violate the device's electrical specification. **3:** R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin

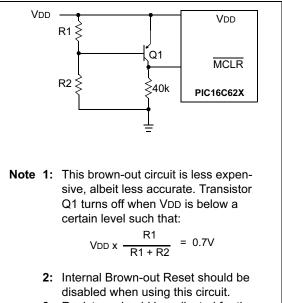

breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 9-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

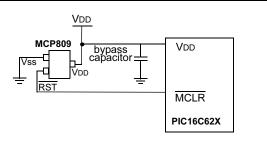

- Note 1: This circuit will activate RESET when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - **2:** Internal Brown-out Reset circuitry should be disabled when using this circuit.

FIGURE 9-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

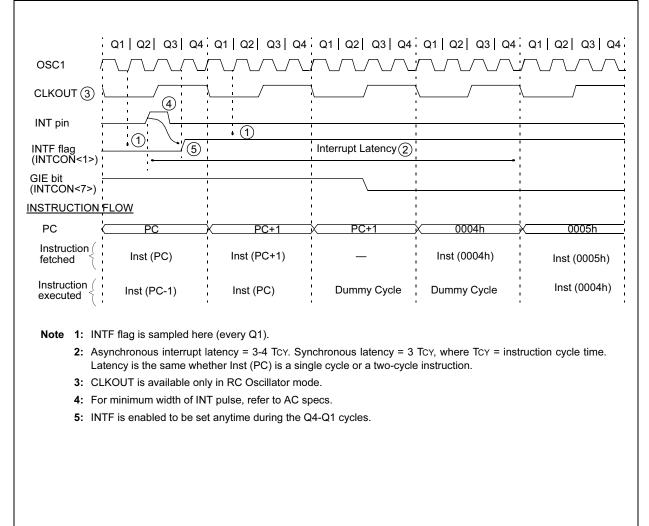
This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur						
	when the read operation is being executed						
	(start of the Q2 cycle), then the RBIF						
	interrupt flag may not get set.						

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

9.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

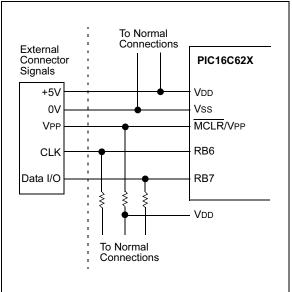
Note:	Microchip	does	not	recommend	code				
	protecting windowed devices.								

9.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. Only the Least Significant 4 bits of the ID locations are used.

9.11 In-Circuit Serial Programming™

The PIC16C62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specification (DS30228).

A typical In-Circuit Serial Programming connection is shown in Figure 9-19.

FIGURE 9-19:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[label] BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le f \le 127$	Operands:	$0 \leq k \leq 2047$
	$0 \le b < 7$	Operation:	(PC) + 1 \rightarrow TOS,
Operation:	skip if (f) = 1		$k \rightarrow PC<10:0>$, (PCLATH<4:3>) $\rightarrow PC<12:11>$
Status Affected:	None	Status Affected:	None
Encoding:	01 11bb bfff ffff	Encoding:	10 0kkk kkkk kkkk
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc-	Description:	Call Subroutine. First, return address (PC+1) is pushed onto
	tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.		the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.
Words:	1	Words:	1
Cycles:	1(2)	Cycles:	2
Example	here btfss FLAG,1 false goto PROCESS_CO	Example	HERE CALL
	TRUE DE	Example	THER
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1,		Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1
	PC = address TRUE	CLRF	Clear f
		Syntax:	[<i>label</i>] CLRF f
		Operands:	$0 \leq f \leq 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
		Status Affected:	Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF FLAG_REG
			Before Instruction FLAG_REG = 0x5A After Instruction
			$FLAG_REG = 0x00$ Z = 1

RLF	Rotate	Left f thr	oua	h Car	rv
Syntax:	[label]	RLF	f,d		
Operands:	0 ≤ f ≤ 1 d ∈ [0,1				
Operation:	See des	scription I	pelov	N	
Status Affected:	С				
Encoding:	00	1101	df	ff	ffff
escription:	rotated the Carr is place		the 'd' is V reg	left th 0, the jister. back	rough e result If 'd' is
Vords:	1				
Cycles:	1				
xample	RLF	REG1,	0		
	Before I After Ins	nstructio REG1 C struction REG1 W	n = = =	1110 0 1110 1100	
		С	=	1	

RRF	Rotate R	ight f th	nroug	gh Ca	arry	
Syntax:	[label]	RRF f	,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	See desc	ription b	elow	'		
Status Affected:	С					
Encoding:	00	1100	df	ff	ffff	
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
		; _▶	Regis	ter f	}	
Words:	1					
Cycles:	1					
Example	RRF		REG 0	61,		
	Before In	structior	ı			
		REG1 C	= =	1110 0	0110	
	After Inst					
	1	REG1 W C	= = =	1110 0111 0		

SLEEP

VIII							
Syntax:	[label]	SLEEF	D				
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler,} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00	0000	0110	0011			
Description:	The power-down STATUS bit, PD is cleared. Time-out STATUS bit, TO is set. Watch- dog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 9.8 for more details.						
Words:	1						
Cycles:	1						
Example:	SLEEP						

11.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

11.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low cost, run-time development tool, connecting to the host PC via an RS-232 or high speed USB interface. This tool is based on the FLASH PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.

11.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify, and program PICmicro devices without a PC connection. It can also set code protection in this mode.

11.13 PICSTART Plus Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

				Standard Operating Conditions (unless otherwise stated)						
PIC16C	62X		$\begin{array}{rllllllllllllllllllllllllllllllllllll$							
PIC16LC62X			Opera Opera	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V VDD=3.0V			
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C62X

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

PIC16C62XA				$\begin{array}{l lllllllllllllllllllllllllllllllllll$					
PIC16LC62XA				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D022	ΔIWDT	WDT Current ⁽⁵⁾	—	6.0	10 12	μA μA	VDD = 4.0V (125°C)		
D022A D023	Δ IBOR Δ ICOMP	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V		
D023A	$\Delta I V REF$	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V		
D022 D022A D023	ΔIWDT ΔIBOR ΔICOMP	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾		6.0 75 30	10 12 125 60	μΑ μΑ μΑ	VDD=4.0V (125°C) BOD enabled, VDD = 5.0V VDD = 4.0V		
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

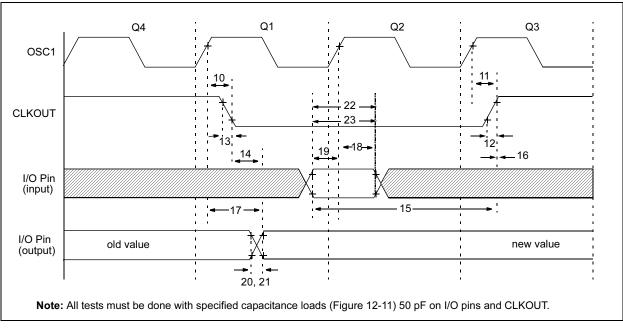
PIC16CR62XA-04 PIC16CR62XA-20				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16LCR62XA-04				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D001	Vdd	Supply Voltage	3.0	—	5.5	V	See Figures 12-7, 12-8, 12-9			
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-7, 12-8, 12-9			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*		V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss		V	See section on Power-on Reset for details			
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—		V/ms	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D010	Idd	Supply Current ⁽²⁾	_	1.2 500	1.7 900	mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode,			
			_	1.0	2.0	mA	(Note 4) Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)			
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS			
			—	3.0	6.0	mA	mode			
				35	70	μA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode			
D010	IDD	Supply Current ⁽²⁾	—	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*			
			—	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)			
			—	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode			

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

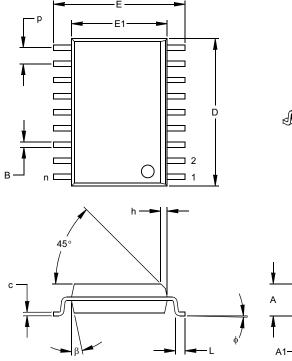
PIC16C62X/C62XA/CR62XA				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and0°C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended					
PIC16LC62X/LC62XA/LCR62XA				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C		
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C		
			_	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C		
	Voн	Output High Voltage ⁽³⁾	1						
D090		I/O ports (Except RA4)	Vdd-0.7	_	_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, +125°C		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7	_	_	V	Iон = -1.0 mA, VDD = 4.5V, +125°С		
	Vон	Output High Voltage ⁽³⁾							
D090		I/O ports (Except RA4)	VDD-0.7	—	-	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C		
			VDD-0.7	—	-	V	ЮН = -2.5 mA, VDD = 4.5V, +125°С		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C		
*D450	1/22	On an Duain Llink Mattern	VDD-0.7	_		V V	IOH = -1.0 mA, VDD = 4.5V, +125°C		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			

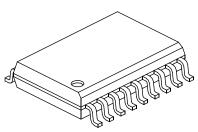
These parameters are characterized but not tested.

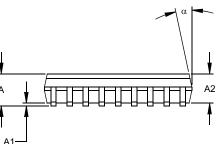
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

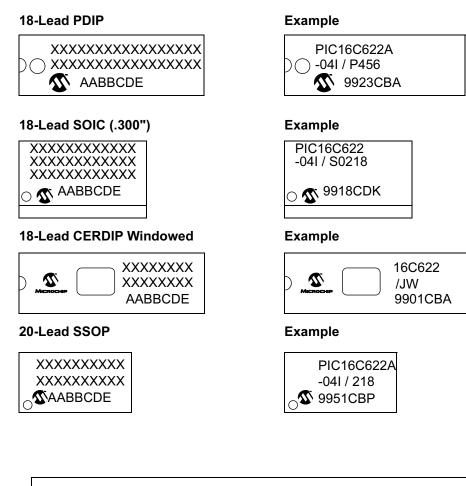

3: Negative current is defined as coming out of the pin.


*



18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.050			1.27		
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59	
Overall Length	D	.446	.454	.462	11.33	11.53	11.73	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle	¢	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

14.1 Package Marking Information

Legend	d: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	50
BSF Instruction	
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	
MPLAB C18	76
MPLAB C30	
CALL Instruction	65
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	
CALL Instruction	
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	

D

Data Memory Organization14
DC Characteristics
PIC16C717/770/771 88, 89, 90, 91, 96, 97, 98
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus78
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet
Development Support75
E
Errata
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

I	
I/O Ports	
I/O Programming Considerations	
ID Locations	
INCF Instruction	
INCFSZ Instruction In-Circuit Serial Programming	
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	63
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	66
CLRWDT	66
COMF	
DECF	
DECFSZ	
GOTO	
INCF INCFSZ	
INCI 32	
IORWF	
MOVF	
MOVLW	68
MOVWF	69
NOP	
OPTION	
RETFIE	
RETLW RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	72
SWAPF	73
TRIS	
XORLW	
XORWF	
Instruction Set Summary INT Interrupt	
INTCON Register	
Interrupts	
IORLW Instruction	
IORWF Instruction	
Μ	
MOVF Instruction	69
MOVLW Instruction	
MOVWF Instruction	69
MPLAB ASM30 Assembler, Linker, Librarian	76
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	77
MPLAB ICE 4000 High Performance Universal	77
In-Circuit Emulator MPLAB Integrated Development Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	