

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

NOTES:

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

File			File		
Address	3		Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h			87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Fh			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h		_	A0h		
	General				
	Purpose Register				
6Fh	5				
70h					
7Fh			FFh		
	Bank 0	Bank 1			
—		1 4			
Unimp	plemented data me	mory locations, r	ead as '0'.		
Note 1:	Note 1: Not a physical register.				

FIGURE 4-5:

DATA MEMORY MAP FOR THE PIC16C622

	1116		
File Address	8		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
00h	TOILID	TRIOD	87h
07h 08h			88h
00h			89h
03h 0Ah	PCLATH	PCLATH	8Ah
0An 0Bh	INTCON	INTCON	8Bh
0Dh	PIR1	PIE1	8Ch
0Ch 0Dh	PIRI	PIEI	8Dh
		PCON	
0Eh 0Fh		PCON	8Eh
			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
	General Purpose	General Purpose	
	Register	Register	
	0	5	BFh
			C0h
7Fh			FFh
, , , , , ,	Bank 0	Bank 1	
Unim	plemented data me	mory locations, re	ad as '0'.
Note 1:	Not a physical re	aister	

FIGURE 4-6: DATA MEMORY MAP FOR THE PIC16C620A/CR620A/621A

	11010002		- 17 (
File Address	3		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h			87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Fh			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h	General Purpose Register		A0h		
6Fh					
70h	General		F0h		
	Purpose Register	Accesses 70h-7Fh	FFh		
7Fh Bank 0 Bank 1					
Unimplemented data memory locations, read as '0'.					
Note 1:	Not a physical re	gister.			

FIGURE 4-7: DATA MEMORY MAP FOR THE PIC16C622A

		C10C022A			
File Address	3		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h			87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Fh			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h			A0h		
	General	General	Aon		
	Purpose Register	Purpose Register			
	rtegister	rtegister	BFh		
			C0h		
0.51					
6Fh	0		F0h		
70h	General Purpose	Accesses			
754	Register	70h-7Fh	FFh		
7Fh	Bank 0	Bank 1	→ FF11		
Unimplemented data memory locations, read as '0'.					
Note 1: Not a physical register.					

4.2.2.4 PIE1 Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)							
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
		CMIE	_			—	_	—
	bit 7							bit 0
bit 7	Unimpleme	nted: Read	d as '0'					
bit 6	CMIE : Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt							
bit 5-0	Unimplemented: Read as '0'							
	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown							

4.2.2.5 PIR1 Register

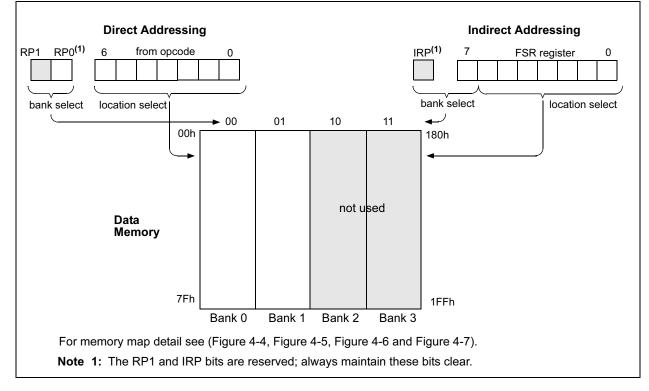
This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of					
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User					
	software should ensure the appropriate					
	interrupt flag bits are clear prior to enabling					
	an interrupt.					

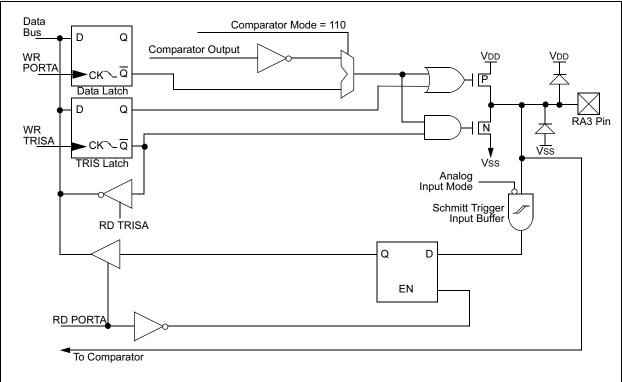
REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

ER 4-5:	PIRT REGISTER (ADDRESS UCH)								
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
		CMIF		—	_				
	bit 7							bit 0	
bit 7	Unimplemented: Read as '0'								
bit 6	CMIF: Com	parator Inte	errupt Flag b	it					
	1 = Compai	rator input h	nas changed	l					
	0 = Comparator input has not changed								
bit 5-0	Unimplemented: Read as '0'								
	Legend:								
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

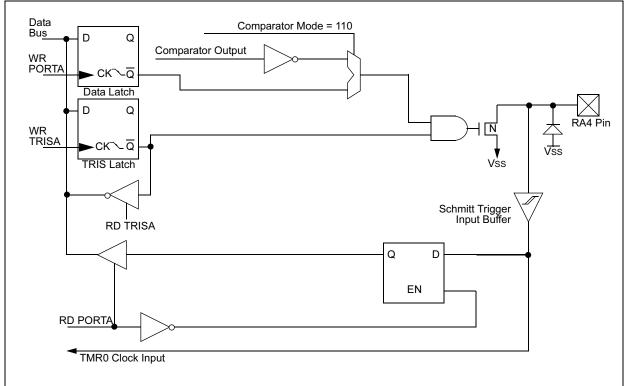
4.4 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-9. However, IRP is not used in the PIC16C62X.

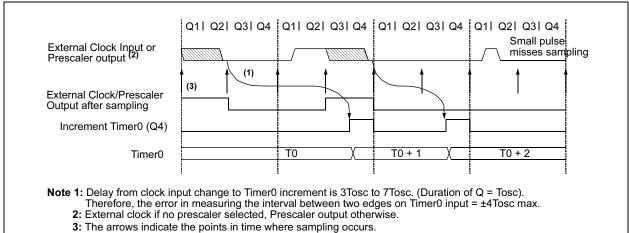

A simple program to clear RAM location 20h-7Fh using indirect addressing is shown in Example 4-1.

EXAN	IPLE 4-	1: INC	DIRECT ADDRESSING
	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,7	;all done?
	goto	NEXT	;no clear next
			;yes continue
CONTI	NUE:		


FIGURE 4-9: DIRECT/INDIRECT ADDRESSING PIC16C62X

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

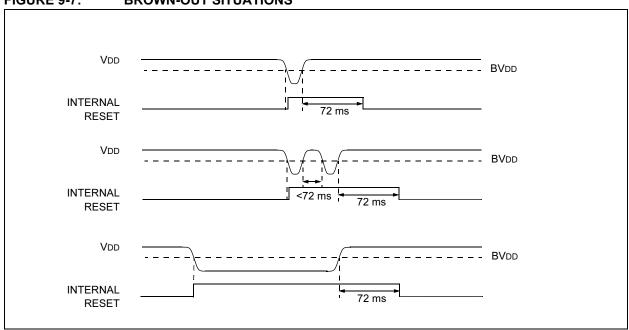
9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

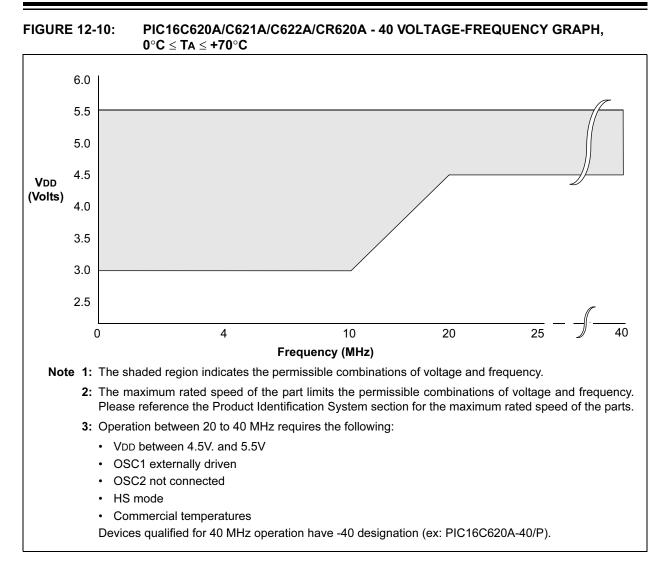

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.


FIGURE 9-7: BROWN-OUT SITUATIONS

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk		
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0,
	the W register.		the result is stored in the W register.
Words:	1		If 'd' is 1, the result is stored back in
Cycles:	1		register 'f'.
Example 1:	SUBLW 0x02	Words:	1
·	Before Instruction	Cycles:	1
	W = 1	Example 1:	SUBWF REG1,1
	C = ?		Before Instruction
	After Instruction		REG1= 3 W = 2
	W = 1 C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2		REG1= 1
	C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0	·	REG1= 2
	C = 1; result is zero		W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction
	After Instruction		REG1= 0 W = 2
	W = 0 x F F		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1= 1 W = 2
			W = 2 C = ?
			After Instruction
			REG1= 0xFF
			W = 2
			C = 0; result is negative

SWAPF	Swap Ni	bbles in	f			
Syntax:	[label]	[<i>label</i>] SWAPF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in \left[0,1\right] \end{array}$	27				
Operation:	(f<3:0>) - (f<7:4>) -		· · ·			
Status Affected:	None					
Encoding:	00	1110	dfff	ffff		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF	REG,	0			
	Before Instruction					
		REG1	= (DxA5		
	After Inst	ruction				
		REG1 W		0xA5 0x5A		

TRIS	Load TRIS Register								
Syntax:	[label] TRIS f								
Operands:	$5 \leq f \leq 7$								
Operation:	(W) \rightarrow TRIS register f;								
Status Affected:	None								
Encoding:	00 0000 0110 Offf								
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.								

XORLW	Exclusive OR Literal with W									
Syntax:	[<i>label</i> XORLW k]									
Operands:	0 ≤ k ≤ 255									
Operation:	(W) .XOR. $k \rightarrow (W)$									
Status Affected:	Z									
Encoding:	11 1010 kkkk kkkk									
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.									
Words:	1									
Cycles:	1									
Example:	XORLW 0xAF									
	Before Instruction									
	W = 0xB5									
	After Instruction									
	W = 0x1A									
XORWF	Evolucius OD W with f									
	Exclusive OR W with f									
Syntax:	[<i>label</i>] XORWF f,d									
Syntax:	[<i>label</i>] XORWF f,d $0 \le f \le 127$									
Syntax: Operands:	$ \begin{array}{ll} \textit{[label]} & XORWF & f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \end{array} $									
Syntax: Operands: Operation:	$ \begin{array}{ll} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) & \text{XOR.} & (\textit{f}) \rightarrow (\textit{dest}) \end{array} $									
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z									
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{array}{c c} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) . \text{XOR.} (\textit{f}) \rightarrow (\text{dest}) \\ \hline Z \\ \hline \hline 00 & 0110 & \text{dfff} & \text{ffff} \\ \hline \text{Exclusive OR the contents of the} \\ W \text{ register with register 'f'. If 'd' is} \\ 0, \text{ the result is stored in the W} \\ \text{register. If 'd' is 1, the result is} \end{array}$									
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z $\boxed{00 \qquad 0110 \qquad dfff \qquad ffff}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$[label] XORWF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z $\boxed{00 0110 dfff ffff}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z 00 0110 dfff ffff Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF REG 1 \\ \end{bmatrix}$									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ REG & = 0xAF \\ \end{bmatrix}$									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF} f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG &= 0xAF \\ W &= 0xB5 \\ \end{bmatrix}$									

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	dard O	perati	ng Con	ditions (unless otherwise stated)
				empera		$\begin{array}{ll} 0^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial and} \\ 0^{\circ}C & \leq TA \leq +125^{\circ}C \text{ for extended} \end{array}$	
PIC16L			$\begin{array}{ c c c c c c } \hline Standard Operating Conditions (unless otherwise stated) \\ Operating temperature & -40^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ & 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial a} \\ & -40^{\circ}C & \leq TA \leq +125^{\circ}C \text{ for extended} \\ Operating voltage VDD range is the PIC16C62X range. \end{array}$				
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V VDD=3.0V
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	 	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C62XA PIC16LC62XA				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details			
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

PIC16CR62XA-04 PIC16CR62XA-20	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
PIC16LCR62XA-04	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C $<$ TA $<$ +125°C for extended								
Param. Sym Characteristic No.	Min Typ† Max Units Conditions								

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

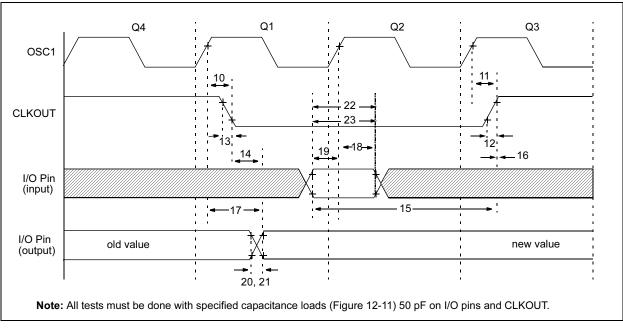
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

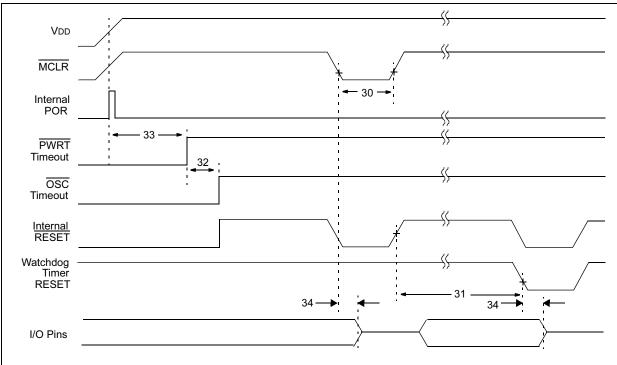
The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.


3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

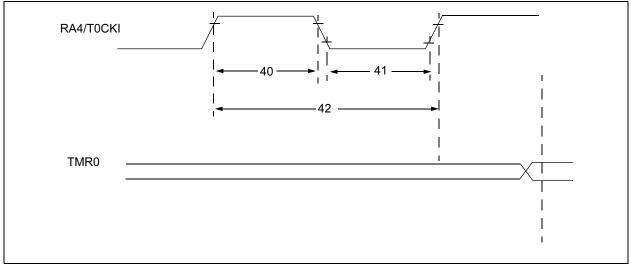

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

FIGURE 12-14: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 12-15: BROWN-OUT RESET TIMING

TABLE 12-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	—	_	ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	_		Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		—	2.0	μS	
35	TBOR	Brown-out Reset Pulse Width	100*	_		μS	$3.7V \leq V\text{DD} \leq 4.3V$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62X

FIGURE 12-16: TIMER0 CLOCK TIMING

TABLE 12-6:	TIMER0 CLOCK REQUIREMENTS
-------------	---------------------------

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	_	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	—	_	ns	
			With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62X

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.