

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621-20e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.3 INTCON Register

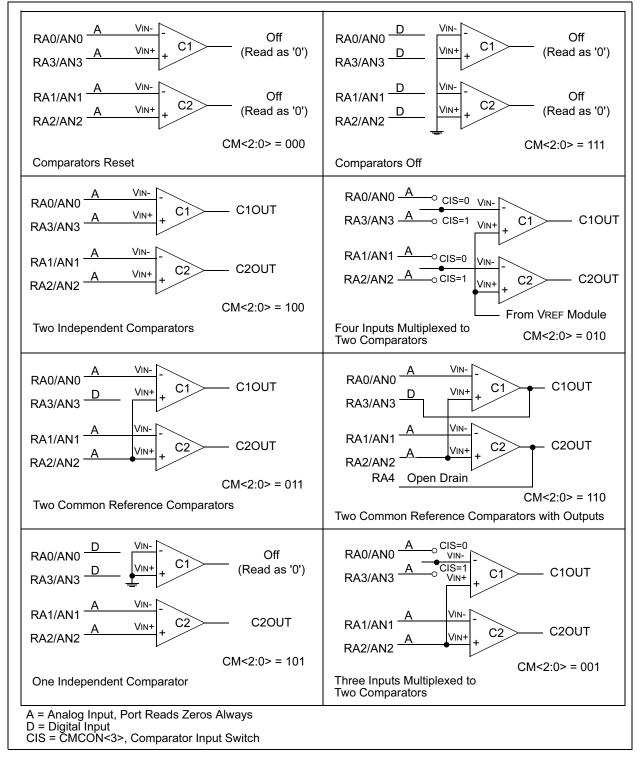
The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

E PE Global Internables all un isables all in Peripheral nables all p TMR0 Ove nables the T isables the	N-0 R/W-0 EIE TOIE rrupt Enable bit n-masked interrunts Interrupt Enable n-masked periphoreripheral interrupt erflow Interrupt Entrupt TMR0 interrupt	e bit heral interrupt pts	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF bit 0
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	s			bit 0
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S			
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S			
sables all in Peripheral nables all un sables all p TMR0 Ove nables the T isables the	nterrupts Interrupt Enable n-masked periph peripheral interru erflow Interrupt Er TMR0 interrupt	e bit heral interrupt pts	s			
nables all u sables all p TMR0 Ove nables the sables the	n-masked periph peripheral interru rflow Interrupt Er TMR0 interrupt	neral interrupt pts	S			
sables all p TMR0 Ove nables the sables the	peripheral interru erflow Interrupt Er TMR0 interrupt	pts	S			
TMR0 Ove nables the sables the	rflow Interrupt Er TMR0 interrupt					
nables the isables the	TMR0 interrupt	nable bit				
sables the						
	I MRU interrupt					
	External Interrupt					
	RB0/INT externa RB0/INT externa					
	hange Interrupt E					
	RB port change i					
	RB port change	•				
TMR0 Ove	rflow Interrupt Fl	ag bit				
MR0 registe	er has overflowed	d (must be cle	eared in soft	ware)		
MR0 registe	er did not overflov	W				
RB0/INT E	xternal Interrupt	Flag bit				
				red in softwa	are)	
RB Port Cl	hange Interrupt F	Flag bit				
'hen at leas		•	-	(must be cle	ared in softw	ware)
	ne RB0/INT ne RB0/INT RB Port C hen at leas	ne RB0/INT external interrune RB0/INT external interrun RB Port Change Interrupt I hen at least one of the RB<	ne RB0/INT external interrupt did not occ RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins cha one of the RB<7:4> pins have changed s	ne RB0/INT external interrupt occurred (must be clea ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state one of the RB<7:4> pins have changed state	ne RB0/INT external interrupt occurred (must be cleared in softwa ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cle	ne RB0/INT external interrupt occurred (must be cleared in software) ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cleared in softwore) one of the RB<7:4> pins have changed state

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)
---------------	--------------------------------------

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


NOTES:

7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

TABLE 7-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT		_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	CMIF	_	_	_	_	_	_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0
85h	TRISA				TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

-

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x0F	;	RA3-RA0 are
MOVWF	TRISA	;	inputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank O
CALL	DELAY10	;	10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

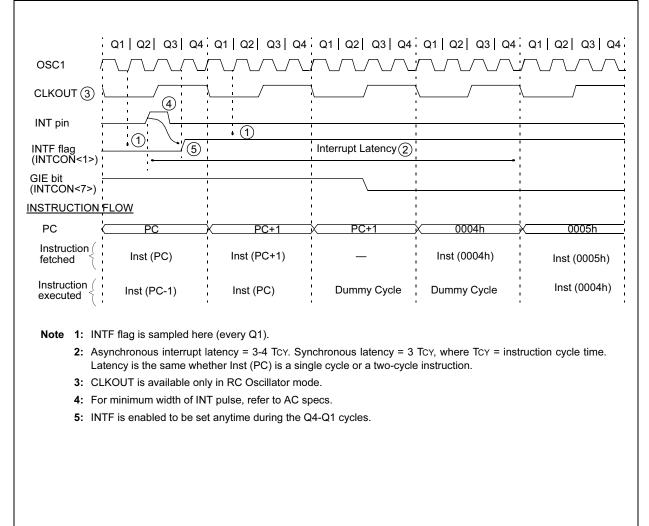
Note: - = Unimplemented, read as "0"

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF
	interrupt flag may not get set.

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear
Syntax:	[label]BCF f,b	Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the
Words:	1		next instruction is skipped. If bit 'b' is '0', then the next instruc-
Cycles:	1		tion fetched during the current
Example	BCF FLAG_REG, 7		instruction execution is discarded,
	Before Instruction FLAG_REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.
	After Instruction	Words:	1
	FLAG_REG = 0x47	Cycles:	1(2)
		Example	here btfsc FLAG,1 false goto process co
BSF	Bit Set f		TRUE DE
Syntax:	[<i>label</i>] BSF f,b		•
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE
Operation:	$1 \rightarrow (f \le b >)$		After Instruction if FLAG<1> = 0.
Status Affected:	None		PC = address TRUE
Encoding:	01 01bb bfff ffff		if FLAG<1>=1, PC = address FALSE
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE
Words:	1		
Cycles:	1		
Example	BSF FLAG_REG, 7		

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

CLRW	Clear W	COMF	Complement f
Syntax:	[<i>label</i>] CLRW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \leq f \leq 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff ffff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the
Words:	1		result is stored back in register 'f'.
Cycles:	1	Words:	1
Example	CLRW	Cycles:	1
	Before Instruction W = 0x5A	Example	COMF REG1,0
	W = 0x5A After Instruction		Before Instruction
	W = 0x00 $Z = 1$		REG1 = 0x13 After Instruction $REG1 = 0x13$ $W = 0xEC$
CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
-j		DECF	Decrement f
Operands:	None	DECF Svntax:	Decrement f
-	None $00h \rightarrow WDT$	Syntax:	[label] DECF f,d
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow \underline{WD}T$ prescaler,	_	
Operands:	None $00h \rightarrow WDT$	Syntax:	[<i>label</i>] DECF f,d 0 ≤ f ≤ 127
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow TO$	Syntax: Operands:	[<i>label</i>] DECF f,d 0 ≤ f ≤ 127 d ∈ [0,1]
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$	Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD	Syntax: Operands: Operation: Status Affected:	[<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD 00 0000 0110 0100 CLRWDT instruction resets the Watchdog Timer. It also resets the pres <u>caler</u> of <u>the</u> WDT. STATUS	Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD OUDIMIC OTIO CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 \qquad dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1	Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETFIE
	After Interrupt PC = TOS GIE = 1

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None						
Encoding:	11 01xx kkkk kkkk						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	CALL TABLE;W contains table						
TABLE	;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8						
RETURN	Return from Subroutine						
Syntax:	[label] RETURN						
Operands:	None						
Operation:	$TOS \rightarrow PC$						
Status Affected:	None						
Encoding:	00 0000 0000 1000						
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETURN						
	After Interrupt PC = TOS						

RLF	Rotate	Left f thr	oua	h Car	rv			
Syntax:	[label]	RLF	f,d					
Operands:	0 ≤ f ≤ 1 d ∈ [0,1							
Operation:	See des	See description below						
Status Affected:	С							
Encoding:	00	1101	df	ff	ffff			
escription:	rotated the Carr is place		the 'd' is V reg	left th 0, the jister. back	rough e result If 'd' is			
Vords:	1							
Cycles:	1							
xample	RLF	REG1,	0					
	Before I After Ins	nstructio REG1 C struction REG1 W	n = = =	1110 0 1110 1100				
		С	=	1				

RRF	Rotate R	ight f th	nroug	gh Ca	arry			
Syntax:	[label]	RRF f	,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	See desc	ription b	elow	'				
Status Affected:	С							
Encoding:	00	1100	df	ff	ffff			
Description:	The conternation of the Carry is placed 1, the restrict register 'f	ne bit to Flag. If in the V sult is pla	the ri 'd' is / reg	ight th 0, the ister.	nrough e result If 'd' is			
			Regis	ter f	}			
Words:	1							
Cycles:	1							
Example	RRF		REG 0	61,				
	Before In	structior	ı					
		REG1 C	= =	1110 0	0110			
	After Inst							
	1	REG1 W C	= = =	1110 0111 0				

SLEEP

VIII						
Syntax:	[label]	SLEEF	D			
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler,} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0011		
Description:	PD is cle STATUS dog Time cleared. The proc mode wi	ver-down eared. Tin bit, TO i er and its cessor is th the os . See Se tails.	me-out is set. W s prescal put into s scillator	atch- er are SLEEP		
Words:	1					
Cycles:	1					
Example:	SLEEP					

SWAPF	Swap Ni	bbles in	f						
Syntax:	[label] SWAPF f,d								
Operands:	$0 \le f \le 127$ d $\in [0,1]$								
Operation:	(f<3:0>) - (f<7:4>) -		<i>,</i> .						
Status Affected:	None								
Encoding:	00	1110	dfff	ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Example	SWAPF	REG,	0						
	Before In	struction							
		REG1	= (DxA5					
	After Inst	ruction							
		REG1 W		0xA5 0x5A					

TRIS	Load TRIS Register						
Syntax:	[<i>label</i>] TRIS f						
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TRIS$ register f;						
Status Affected:	None						
Encoding:	00 0000 0110 Offf						
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.						

XORLW	Exclusive OR Literal with W							
Syntax:	[<i>label</i> XORLW k]							
Operands:	$0 \le k \le 255$							
Operation:	(W) .XOR. $k \rightarrow (W)$							
Status Affected:	Z							
Encoding:	11 1010 kkkk kkkk							
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Example:	XORLW 0xAF							
	Before Instruction							
	W = 0xB5							
	After Instruction							
	W = 0x1A							
XORWF								
	Exclusive OR W with f							
Syntax:	[label] XORWF f,d							
Syntax:	[<i>label</i>] XORWF f,d $0 \le f \le 127$							
Syntax: Operands:	$ \begin{array}{ll} \textit{[label]} & XORWF & f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \end{array} $							
Syntax: Operands: Operation:	$ \begin{array}{ll} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) & \text{XOR.} & (\textit{f}) \rightarrow (\textit{dest}) \end{array} $							
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z							
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{array}{c c} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) . \text{XOR.} (\textit{f}) \rightarrow (\text{dest}) \\ \hline Z \\ \hline \hline 00 & 0110 & \text{dfff} & \text{ffff} \\ \hline \text{Exclusive OR the contents of the} \\ W \text{ register with register 'f'. If 'd' is} \\ 0, \text{ the result is stored in the W} \\ \hline \text{register. If 'd' is 1, the result is} \end{array}$							
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(W) . \text{XOR. } (f) \rightarrow (\text{dest})$ Z $\boxed{00 \qquad 0110 \text{dfff} \text{ffff}}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.							
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$[label] XORWF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z $\boxed{00 \qquad 0110 \qquad dfff \qquad ffff}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1							
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z 00 0110 dfff ffff Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1							
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF REG 1 \\ \end{bmatrix}$							
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ REG & = 0xAF \\ \end{bmatrix}$							
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF} f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG &= 0xAF \\ W &= 0xB5 \\ \end{bmatrix}$							

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to VDD +0.6V
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	300 mA
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, Iок (Vo <0 or Vo>VoD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	x IOH} + Σ (VOI x IOL).

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16CR62XA-04 PIC16CR62XA-20	$\begin{array}{l lllllllllllllllllllllllllllllllllll$				
PIC16LCR62XA-04	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended				
Param. Sym Characteristic No.	Min Typ† Max Units Conditions				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

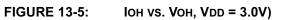
DC CHARACTERISTICS					-	ating (erature	Conditions (unless otherwise stated) e 0°C \leq TA \leq +70°C for commercial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V
			—	—	5.0	μA	VDD = 4.5V*
			—	—	9.0	μA	VDD = 5.5V
		(5)	—	—	15	μA	VDD = 5.5V Extended
D022	Δ IWDT	WDT Current ⁽⁵⁾	—	6.0	10	μA	VDD = 4.0V
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$
D022A D023	Δ IBOR Δ ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V
		Comparator ⁽⁵⁾					
D023A	$\Delta IVREF$	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA	
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0	-	4	MHz	All temperatures
		XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0	_	4 20	MHz MHz	All temperatures All temperatures
		The Oscillator Operating Frequency	U		20	IVI⊓Z	Air temperatures

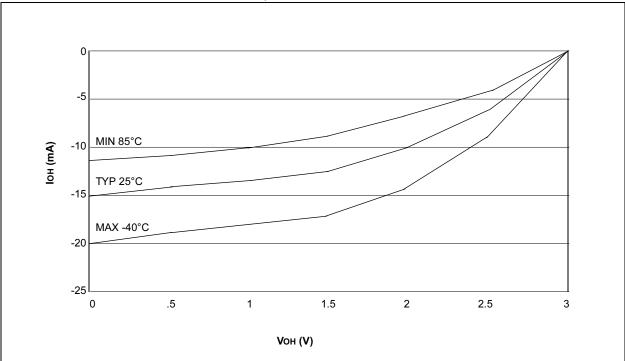
These parameters are characterized but not tested.

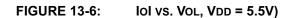
† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

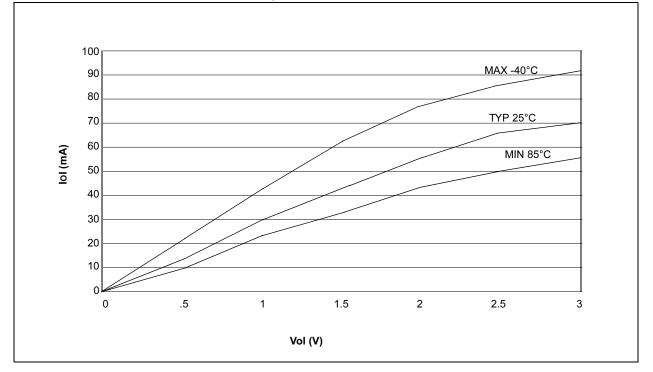
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP


mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

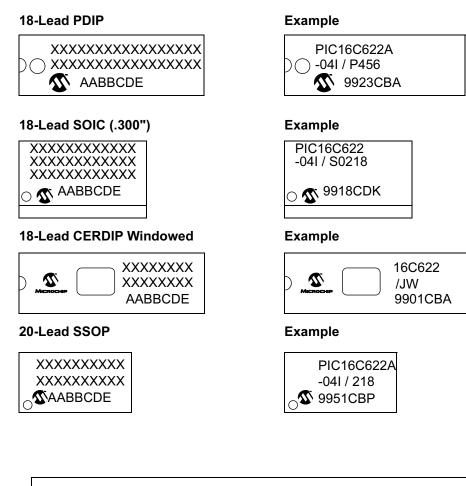

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units INCHES*				MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

14.1 Package Marking Information

Legenc	I: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

DeviceFrequency RangeTemperature RangePackageDevicePIC16C62X: VDD range 3.0V to 6.0V PIC16C62XAT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XAT: VDD range 2.5V to 5.5V PIC16LC620AT: VDD range 2.0V to 5.5V <th>PART NO.</th> <th><u>-xx</u></th> <th>¥</th> <th><u>/xx</u></th> <th>xxx</th> <th>Ex</th> <th>amples:</th>	PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	Ex	amples:
PIC16C62XT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V 	Device			Package	Pattern	a)	PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
$\begin{array}{rcl} 04 & 4 \text{ MHz} (XT \text{ and } RC \text{ osc}) \\ 20 & 20 \text{ MHz} (HS \text{ osc}) \\ 20 & 20 \text{ MHz} (HS \text{ osc}) \\ \end{array}$ Temperature Range $\begin{array}{rcl} - & = & 0^{\circ}\text{C to } +70^{\circ}\text{C} \\ I & = & -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ E & = & -40^{\circ}\text{C to } +125^{\circ}\text{C} \end{array}$ Package $\begin{array}{rcl} P & = & P\text{DIP} \\ \text{SO} & = & \text{SOIC} (\text{Gull Wing, 300 mil bo} \\ \text{SS} & = & \text{SSOP} (209 \text{ mil}) \end{array}$	Device	PIC16C62 PIC16C62 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16CR PIC16CR PIC16CR	2XT: VDD range 3.0 2XA: VDD range 3.0 2XAT: VDD range 3.6 22XT: VDD range 2.5 32XT: VDD range 2.5 32XA: VDD range 2 52XA: VDD range 2 620A: VDD range 2 620A: VDD range R620A: VDD range	W to 6.0V (Tap OV to 5.5V .0V to 5.5V (Ta 5V to 6.0V .5V to 6.0V (Ta .5V to 5.5V .5V to 5.5V 2.5V to 5.5V	pe and Reel) pe and Reel) ape and Reel) ape and Reel)) b)	PIC16LC622-04I/SO = Industrial temp., SOIC package, 200 kHz, extended VDD limits.
Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	04 4 MHz (XT and RC osc)						
SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Temperature Rar	= -	-40°C to +85°C				
	Package	SO = SS =	SOIC (Gull Wing, SSOP (209 mil)	• •			
Pattern 3-Digit Pattern Code for QTP (blank oth	Pattern	3-Digit Pa	ttern Code for QTF	O (blank otherward)	<i>r</i> ise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.