

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

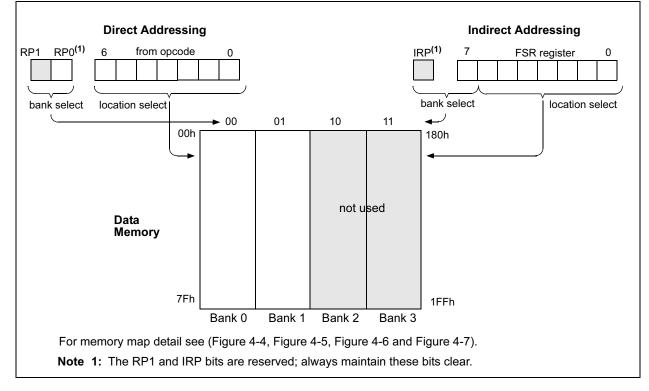
2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

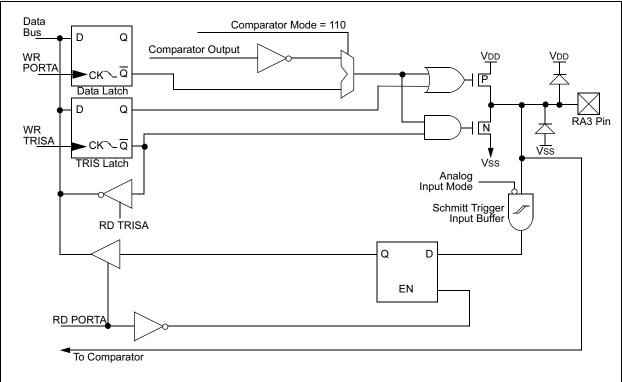
4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

NOTES:

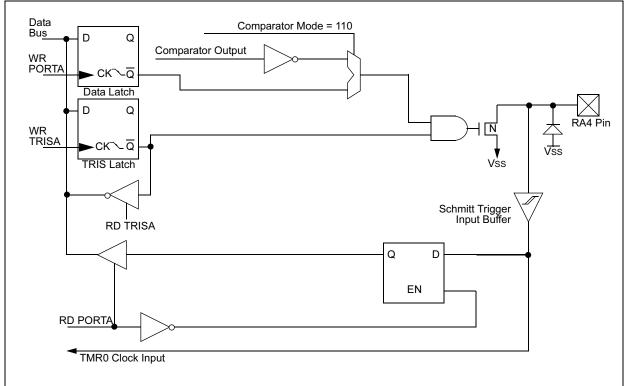
4.4 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-9. However, IRP is not used in the PIC16C62X.


A simple program to clear RAM location 20h-7Fh using indirect addressing is shown in Example 4-1.

EXAN	IPLE 4-	1: INC	DIRECT ADDRESSING
	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,7	;all done?
	goto	NEXT	;no clear next
			;yes continue
CONTI	NUE:		


FIGURE 4-9: DIRECT/INDIRECT ADDRESSING PIC16C62X

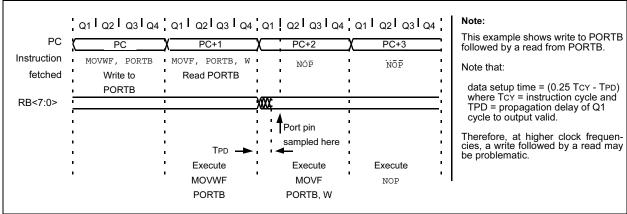
5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}\,,\ {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

	= =
; Initial PORT settings:	PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
; PORTB<7:6> have external ; connected to other circu	
;	
;	PORT latch PORT pins
;	
	-
BCF PORTB, 7	; 01pp pppp 11pp pppp
BCF PORTB, 6	; 10pp pppp 11pp pppp
BSF STATUS, RPO	;
BCF TRISB, 7	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	
; Note that the user may h	nave expected the pin
; values to be 00pp pppp.	The 2nd BCF caused
; RB7 to be latched as the	e pin value (High).

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

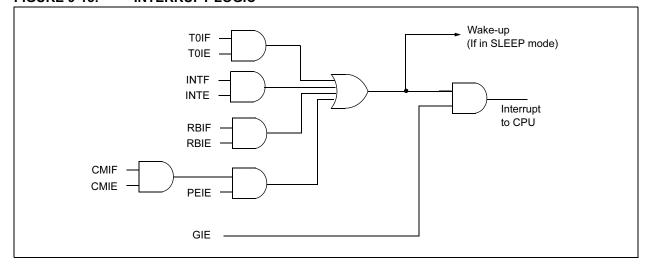

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

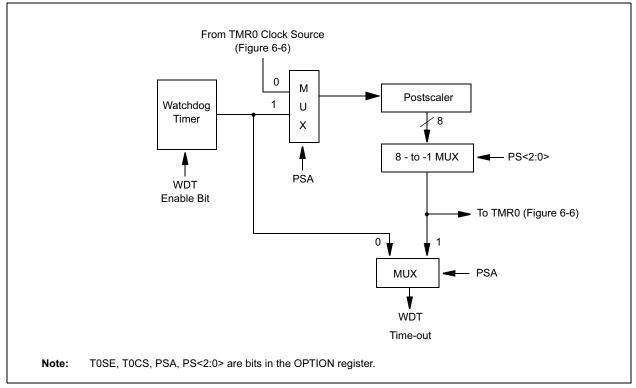
- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see


DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-7: SUMMARY OF WATCHDOG TIMER REGISTERS
--

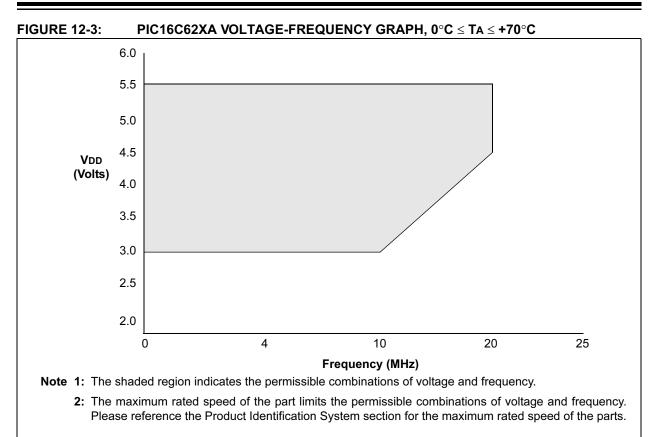
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	—	—
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded cells are not used by the Watchdog Timer.

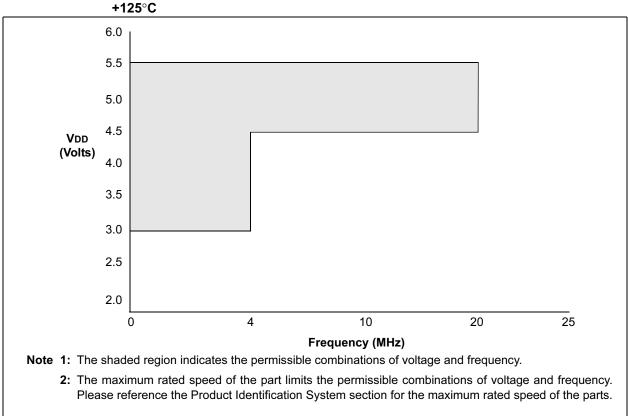
Note: – = Unimplemented location, read as "0"

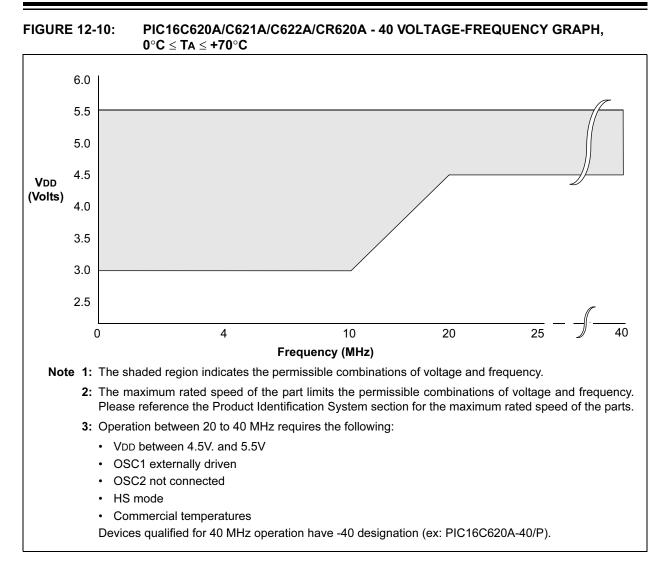
+ = Reserved for future use

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$0 \le f \le 127$ d \in [0,1]
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	$\begin{array}{rcl} PC &=& address \ {\tt HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \ {\tt CONTINUE} \\ \mbox{if CNT} \neq& 0, \\ PC &=& address \ {\tt HERE} + 1 \\ \end{array}$
GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Encoding:	10 1kkk kkkk kkkk
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.
Words:	1
Cycles:	2
Example	GOTO THERE
	After Instruction PC = Address THERE


INCF	Increment f			
Syntax:	[<i>label</i>] INCF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 1010 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example	INCF CNT, 1			
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1			

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1
MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to reg- ister 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F
	$\begin{array}{rcl} \text{OPTION} &= & 0x4F \\ \text{W} &= & 0x4F \end{array}$


NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No opera	ition.		
Words:	1			
Cycles:	1			
Example	NOP			


OPTION	Load Op	tion Reg	gister		
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \rightarrow OPTION$				
Status Affected:	None				
Encoding:	00	0000	0110	0010	
Description:	The control loaded in This instr code con products. able/writa directly a	the OP fuction is apatibility Since C able regis	FION regi supporte with PIC PTION is ster, the u	ster. ed for 16C5X a read-	
Words:	1				
Cycles:	1				
Example					
	ity with	future P s, do no	vard com PICmicro [©] ot use thi	B	

NOTES:

FIGURE 12-4: PIC16C62XA VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le Ta \le 0^{\circ}C$, $+70^{\circ}C \le Ta \le +125^{\circ}C$

PIC16CR62XA-04 PIC16CR62XA-20	$ \begin{array}{ c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array} $				
PIC16LCR62XA-04	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended				
Param. Sym Characteristic No.	Min Typ† Max Units Conditions				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Sym	Characteristic		Тур†	Max	Units	Conditions			
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared			
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*			
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)			
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)			
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode			
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode			
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode			
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V			
			—	—	5.0	μA	VDD = 4.5V*			
			—	—	9.0	μA	VDD = 5.5V			
		(5)	—	—	15	μA	VDD = 5.5V Extended			
D022	Δ IWDT	WDT Current ⁽⁵⁾	—	6.0	10	μA	VDD = 4.0V			
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$			
D022A D023	∆IBOR ∆ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V			
		Comparator ⁽⁵⁾								
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V			
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz			
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA				
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc			
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc			
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures			
		RC Oscillator Operating Frequency	0	-	4	MHz	All temperatures			
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures			
		HS Oscillator Operating Frequency	U		20	MHz	All temperatures			

These parameters are characterized but not tested.

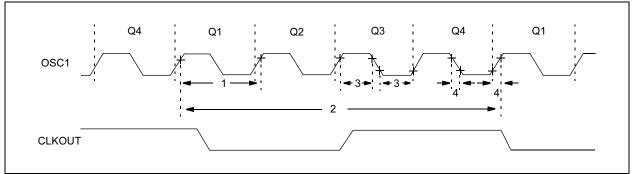
† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP

mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.


5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

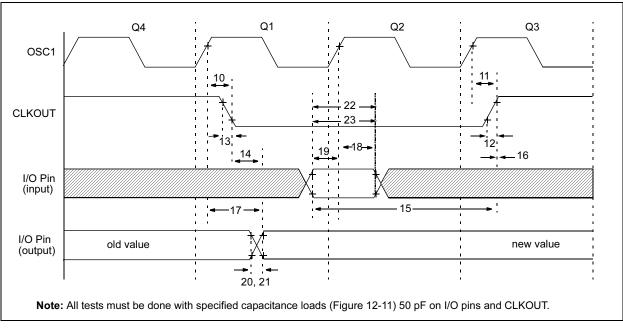
6: Commercial temperature range only.

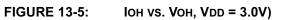
7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

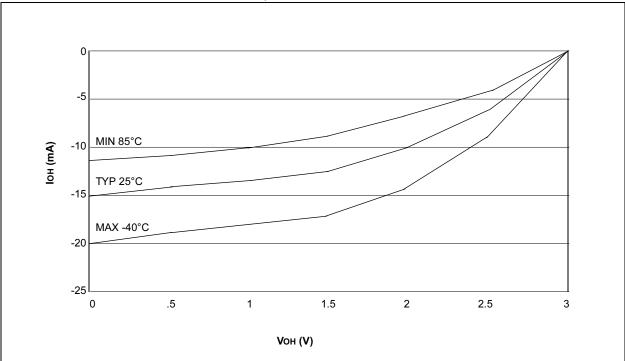
12.9 Timing Diagrams and Specifications

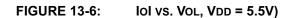
FIGURE 12-12: EXTERNAL CLOCK TIMING

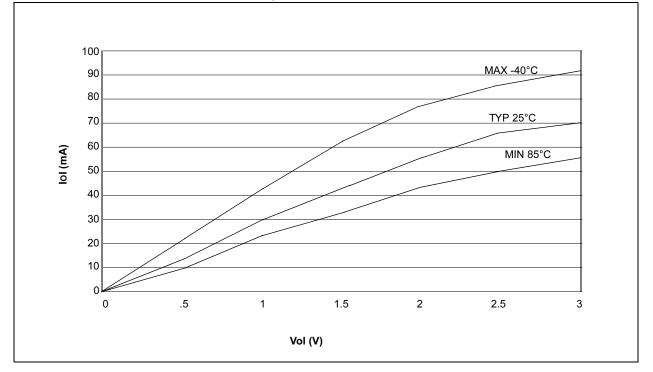
TABLE 12-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
1A	1A Fosc External CLKIN Frequency ⁽¹⁾		DC	—	4	MHz	XT and RC Osc mode, VDD=5.0V	
			DC	_	20	MHz	HS Osc mode	
	Oscillator Frequency ⁽¹⁾		DC	—	200	kHz	LP Osc mode	
			DC	—	4	MHz	RC Osc mode, VDD=5.0V	
			0.1	—	4	MHz	XT Osc mode	
			1	—	20	MHz	HS Osc mode	
			DC	—	200	kHz	LP Osc mode	
1	Tosc	External CLKIN Period ⁽¹⁾	250	—	_	ns	XT and RC Osc mode	
			50	—	—	ns	HS Osc mode	
			5	—	—	μs	LP Osc mode	
		Oscillator Period ⁽¹⁾	250	—	_	ns	RC Osc mode	
			250	—	10,000	ns	XT Osc mode	
			50	—	1,000	ns	HS Osc mode	
			5	—	—	μs	LP Osc mode	
2	TCY	Instruction Cycle Time ⁽¹⁾	1.0	Fosc/4	DC	μS	Tcys=Fosc/4	
3*	TosL,	,	100*	—	_	ns	XT oscillator, Tosc L/H duty cycle	
	TosH	Low Time	2*	—	—	μs	LP oscillator, Tosc L/H duty cycle	
			20*	_	—	ns	HS oscillator, Tosc L/H duty cycle	
4*	TosR,		25*	_	_	ns	XT oscillator	
	TosF		50*	—	—	ns	LP oscillator	
			15*	—	—	ns	HS oscillator	


2: * These parameters are characterized but not tested.


3: † Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.



20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		MILLIMETERS			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		20			20		
Pitch	р		.026			0.65		
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.278	.284	.289	7.06	7.20	7.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	φ	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom		0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

NOTES: