

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621a-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	EPROM Program Memory (x14 words)	512	512	512	1K	1K	2K	2K
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

FIGURE 3-1: BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

FIGURE 4-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The Special Function Registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	ig this locat	on uses co	ntents of FS	SR to addre	ess data me	mory (not a	a physical	XXXX XXXX	XXXX XXXX
01h	TMR0	Timer0 Mo	odule's Reg	xxxx xxxx	uuuu uuuu						
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h-09h	Unimplemented									_	_
0Ah	PCLATH	—	—	—	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
0Dh-1Eh	Unimplemented									_	_
1Fh	CMCON	C2OUT	C1OUT	—	—	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	g this locat	ion uses co	ntents of FS	SR to addre	ess data me	mory (not a	a physical	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	ignificant B	yte				0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h-89h	Unimplemented									_	_
8Ah	PCLATH	-	-	—	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	CMIE	—	—	—	—	—	—	-0	-0
8Dh	Unimplemented									_	_
8Eh	PCON	_	_	_	_	—	_	POR	BOR	0x	uq
8Fh-9Eh	Unimplemented								-	_	_
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown,

 ${\rm q}$ = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

2: IRP & RP1 bits are reserved; always maintain these bits clear.

TABLE 5-1:PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input
RA1/AN1	bit1	ST	Input/output or comparator input
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output
RA3/AN3	bit3	ST	Input/output or comparator input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA		_		RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by PORTA.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}\,,\;\;{\tt BSF},\; etc.)$ on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings:	PORTB<7:4> Inpu	ıts							
; PORTB<3:0> Outputs									
; PORTB<7:6> have external pull-up and are not ; connected to other circuitry									
;									
;	PORT latch PO	ORT pins							
;									
	-								
BCF PORTB, 7	;01pp pppp 11	ipp pppp							
BCF PORTB, 6	;10pp pppp 11	lpp pppp							
BSF STATUS, RPO	;								
BCF TRISB, 7	;10pp pppp 11	lpp pppp							
BCF TRISB, 6	;10pp pppp 10)pp pppp							
;									
; Note that the user may h	ave expected the	pin							
; values to be 00pp pppp.	; values to be 00pp pppp. The 2nd BCF caused								
; RB7 to be latched as the	e pin value (High)).							

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN	VROE	Vrr	_	VR3	VR2	VR1	Vr0			
	bit 7							bit 0			
bit 7	VREN: VREI 1 = VREF C	F Enable ircuit power	ed on								
	0 = VREF C	ircuit powere	ed down, no	IDD drain							
bit 6	VROE: VREF Output Enable										
	1 = VREF IS 0 = VREF IS	s output on F s disconnect	cA2 pin ed from RA2	2 pin							
bit 5	VRR: VREF	Range sele	ction	•							
	1 = Low Ra	ange									
hit 1		ange	d aa '0'								
DIC 4	Unimplem	ented: Rea	das U								
bit 3-0	VR<3:0>: \	/REF value s	election $0 \leq$	VR [3:0] ≤ 1	5						
	when VRR	= 1: VREF =	(VR<3:0>/ 2	4) * VDD	0) +) /						
	when VRR	= 0: VREF =	1/4 ^ VDD +	(VR<3:0>/ 3	2) ^ VDD						
	Legend:										
	R = Reada	ıble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			
8-1:	VOLTAGE			K DIAGR	۸M						
			16 \$	Stages							
\sim	T			∕		_					
\rightarrow	-여드 _{8R}	R	R	R	R						
			ΔΔΔ .	۸ ۸ ۸	A A A						

REGISTER 8-1: VRCON REGISTER(ADDRESS 9Fh)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-

CLRW	Clear W	COMF	Complement f
Syntax:	[label] CLRW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff ffff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0, the
Words:	1		result is stored in W. If 'd' is 1, the
Cycles:	1	Words:	1
Example	CLRW	Cycles:	1
	Before Instruction	Evernle	COME DECI 0
	W = 0x5A	Example	Comp REGI, 0
	W = 0x00		REG1 = $0x13$
	Z = 1		After Instruction
			$\begin{array}{rcl} REG1 &= & 0x13 \\ W &= & 0xEC \end{array}$
CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
e jineaa		DECE	Decrement f
Operands:	None	DECF	Decrement f
Operands: Operation:	None $00h \rightarrow WDT$	DECF Syntax:	Decrement f [/abe/] DECF f,d
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$	DECF Syntax: Operands:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$	DECF Syntax: Operands: Operation:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD	DECF Syntax: Operands: Operation: Status Affected:	Decrement f [label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) 7
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 \qquad 0000 \qquad 0110 \qquad 0100$	DECF Syntax: Operands: Operation: Status Affected: Encoding:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffffff
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ $00 0000 0110 0100$ CLEWDT instruction resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z 00 0011 dffdffDecrement register 'f'If 'd' is 0
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the W
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ OUDIAL OF CONSTRUCTION OF CONSTRUCTURE OF CON	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result is
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \text{ instruction resets the} \\ Watchdog Timer. It also resets the \\ prescaler of the WDT. STATUS \\ bits TO and PD are set. \\ 1 \\ \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the pres <u>caler of the</u> WDT. STATUS bits TO and PD are set. 1 1	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD 00 0000 0110 0100 CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = 2	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 → (dest) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1 DECF CNT, 1 Before Instruction CNT = 0x01
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1Before Instruction $CNT = 0x01$ $Z = 0$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \ instruction \ resets the \\ Watchdog \ Timer. It also resets the \\ prescaler \ of \ the \ WDT. \ STATUS \\ bits \ TO \ and \ PD \ are \ set. \\ 1 \\ 1 \\ \hline \\ CLRWDT \\ \hline \\ Before \ Instruction \\ \ WDT \ counter \ = \ ? \\ After \ Instruction \\ \ WDT \ counter \ = \ 0x00 \\ \hline \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1Before Instruction $CNT = 0x01$ $Z = 0$ After Instruction
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT\\ 0 \rightarrow WDT \text{ prescaler,}\\ 1 \rightarrow \overline{TO}\\ 1 \rightarrow PD\\ \hline \overline{TO}, \overline{PD}\\ \hline \hline 00 & 0000 & 0110 & 0100\\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = 0 \overline{TO} = 1	DECF Syntax: Operands: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.11DECFCNT, 1Before Instruction $Z = 0$ After Instruction $CNT = 0x01$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

PIC16C62XA				dard O ating te	perati empera	n g Con iture -4 -4	ditions (unless otherwise stated) $10^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $10^{\circ}C \leq TA \leq +125^{\circ}C$ for extended		
PIC16LC62XA				Standard Operating Conditions (unless otherwise statesOperating temperature -40° C \leq TA \leq +85°C for industr 0° C \leq TA \leq +70°C for comme -40° C \leq TA \leq +125°C for exter					
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D022	ΔİWDT	WDT Current ⁽⁵⁾	—	6.0	10 12	μA μA	VDD = 4.0V (125°C)		
D022A	Δ IBOR	Brown-out Reset Current ⁽⁵⁾	—	75	125	μA	BOD enabled, VDD = 5.0V		
D023		Comparator Current for each Comparator ⁽⁵⁾	_	30	60	μA	VDD = 4.0V		
D023A	ΔIVREF	VREF Current ⁽³⁾	_	80	135	μA	VDD = 4.0V		
D022	Δ IWDT	WDT Current ⁽⁵⁾	—	6.0	10	μΑ	VDD=4.0V		
DOODA	41	Descent Descet Operation (5)		75	12	μA	$\frac{(125^{\circ}C)}{200} = 5.017$		
D022A		Brown-out Reset Current ^(e)		75	125	μΑ	BOD enabled, $VDD = 5.0V$		
D023	AICOMP	Comparator Current for each		30	60	μΑ	VDD - 4.0V		
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	—	20	MHZ	All temperatures		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0	_	4 20	MHZ MHZ	All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

PIC16C	62XA/CR62XA	$\label{eq:standard operating Conditions (unless otherwise stated)} Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended} $						
PIC16LC62X/LC62XA/LCR62XA			Standa Operatir	r d Ope ng tem	perating C	onditio -40°C 0°C -40°C	ns (unless otherwise stated) \leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial and \leq TA \leq +125°C for extended	
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise	
D031		with Schmitt Trigger input	Vss		0.2 VDD	V		
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)	
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V		
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V		
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	-	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise	
D031		with Schmitt Trigger input	Vss	—	0.2 VDD	V		
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)	
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V		
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V		
	Vih	Input High Voltage						
		I/O ports						
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise	
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD			
D042		MCLR RA4/T0CKI	0.8 Vdd	_	Vdd	V		
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	Vdd	V	(Note 1)	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
PIC16L0	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D040	Vih	Input High Voltage I/O ports with TTL buffer	2.0V	_	1/22	V	VDD = 4.5V to 5.5V
D041		with Schmitt Trigger input	0.25 VDD + 0.8V		VDD VDD		otherwise
D041			0.8 VDD	_	VDD	v	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	VDD	V	(Note 1)
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR			±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	lı∟	Input Leakage Current ^(2, 3)					
					±1.0	μΑ	$Vss \leq V PIN \leq V DD, \ pin \ at \ hi\text{-impedance}$
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR	-		±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	$IOL = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	$IOL = 1.6 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$
			_	—	0.6	V	Iol = 1.2 mA, VDD = 4.5V, +125°C

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.8 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

F F F			
т			
F	Frequency	Т	Time
Lowerca	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	osc	OSC1
io	I/O port	tO	TOCKI
mc	MCLR		
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 12-11: LOAD CONDITIONS

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

	Units		INCHES*		N	IILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	34
Brown-Out Detect (BOD)	50
BSF Instruction	64
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	66
CLRWDT Instruction	
Code Brotestian	60

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	66
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	41
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	

D

Data Memory Organization
DC Characteristics
PIC16C717/770/771
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus78
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet
Development Support75
E
Errata3
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

I

I/O Ports	25
I/O Programming Considerations	30
ID Locations	60
INCEST Instruction	67 69
In-Circuit Serial Programming	00 60
Indirect Addressing, INDF and FSR Registers	24
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	63
	63
	63 63
BCF	64
BSF	64
BTFSC	64
BTFSS	65
CALL	65
CLRF	65
	66 66
COME	66 66
DECF	66
DECFSZ	67
GOTO	67
INCF	67
INCFSZ	68
IORLW	68
	60 60
	69 68
MOVWE	60 69
NOP	69
OPTION	69
RETFIE	70
RETLW	70
RETURN	70
RLF	71 74
	71 71
SLEEF	71 72
SUBWF	72
SWAPF	73
TRIS	73
XORLW	73
XORWF	73
Instruction Set Summary	61
INTCON Degister	56
Interrupts	20 55
IORI W Instruction	55 68
IORWF Instruction	68
Μ	
MOVE Instruction	60
MOVI W Instruction	68
MOVWF Instruction	69
MPLAB ASM30 Assembler, Linker, Librarian	76
MPLAB ICD 2 In-Circuit Debugger	77
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	77
MPLAB ICE 4000 High Performance Universal	77
MPLAB Integrated Development Environment Software	// 75
MPLINK Object Linker/MPLIB Object Librarian	76

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manag	er Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16C62X	_iterature Number: DS30235J
Que	stions:	
1. \	What are the best features of this	document?
-		
<u>-</u>		
2. I	How does this document meet yo	ar hardware and software development needs?
-		
- 3. [Do you find the organization of thi	s document easy to follow? If not, why?
_		
_		
4. \	What additions to the document d	o you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the documen	t could be made without affecting the overall usefulness?
-		
- 6 I	s there any incorrect or misleadin	a information (what and where)?
0. 1		
-		
7. H	How would you improve this docu	ment?
_		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	E	xamples:
Device	Frequency Range	Temperature Range	Package	Pattern	a)	 PIC16C621A - 04/P 301 = Commercial temp PDIP package, 4 MHz, normal VDD limits, QT pattern #301.
Device Frequency Range	PIC16C6 PIC16C6 PIC16C6 PIC16LC PIC16LC PIC16LC PIC16LC PIC16LC PIC16CF PIC16CF PIC16CC PIC16LC 04 200 04 4 M 20 20 M	52X: VDD range 3.0 52X: VDD range 3.0 52XA: VDD range 3.0 52XA: VDD range 2.5 562XA: VDD range 2.5 572XA: VD range	/ to 6.0V // to 6.0V (Tape 0V to 5.5V 0V to 5.5V (Taj 5V to 6.0V .5V to 6.0V (Taj .5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.0V to 5.5V 2.0V to 5.5V (Taj .5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5	e and Reel) be and Reel) be and Reel) ape and Reel) ape and Reel) Tape and Reel))	 PIC16LC622- 04I/SO = Industrial temp., SOI package, 200 kHz, extended VDD limits.
emperature Range	e - = I = E =	0°C to +70°C -40°C to +85°C -40°C to +125°C				
Package	P = SO = SS = JW* =	PDIP SOIC (Gull Wing, SSOP (209 mil) Windowed CERD	, 300 mil body) NP			
Pattern	3-Digit Pa	attern Code for QTF	Optimize (blank otherwise)	se)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.