

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621at-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x0F	; RA3-RA0 are
MOVWF	TRISA	; inputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank O
CALL	DELAY10	; 10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Note: - = Unimplemented, read as "0"

9.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (<u>PWRT</u> disabled), there will be no time-out at all. Figure 9-8, Figure 9-9 and Figure 9-10 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC16C62X device operating in parallel.

Table 9-4 shows the RESET conditions for some special registers, while Table 9-5 shows the RESET conditions for all the registers.

9.4.6 POWER CONTROL (PCON)/ STATUS REGISTER

The power control/STATUS register, PCON (address 8Eh), has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET, if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Reset	Wake-up	
	PWRTE = 0	PWRTE = 1	Brown out Rooot	from SLEEP	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

TABLE 9-1: TIME-OUT IN VARIOUS SITUATIONS

	TABLE 9-2 :	STATUS/PCON BITS AND THEIR SIGNIFICANCE
--	--------------------	---

POR	BOR	то	PD	
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
83h	STATUS				TO	PD				0001 1xxx	000q quuu
8Eh	PCON	_	_				_	POR	BOR	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

FIGURE 9-11: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP) Vdd Vdd D R R1 MCLR PIC16C62X С Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. **2:** < 40 k Ω is recommended to make sure that voltage drop across R does not violate the device's electrical specification. **3:** R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin

breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 9-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate RESET when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - **2:** Internal Brown-out Reset circuitry should be disabled when using this circuit.

FIGURE 9-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

9.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	evices.	

9.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. Only the Least Significant 4 bits of the ID locations are used.

9.11 In-Circuit Serial Programming™

The PIC16C62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specification (DS30228).

A typical In-Circuit Serial Programming connection is shown in Figure 9-19.

FIGURE 9-19:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

CLRW	Clear W	COMF	Complement f
Syntax:	[label] CLRW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff ffff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0, the
Words:	1		result is stored in W. If 'd' is 1, the
Cycles:	1	Words:	1
Example	CLRW	Cycles:	1
	Before Instruction	Evernle	COME DECI 0
	W = 0x5A	Example	Comp REGI, 0
	W = 0x00		REG1 = 0x13
	Z = 1		After Instruction
			$\begin{array}{rcl} REG1 &= & 0x13 \\ W &= & 0xEC \end{array}$
CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
e jineaa		DECE	Decrement f
Operands:	None	DECF	Decrement f
Operands: Operation:	None $00h \rightarrow WDT$	DECF Syntax:	Decrement f [/abe/] DECF f,d
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$	DECF Syntax: Operands:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$	DECF Syntax: Operands: Operation:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD	DECF Syntax: Operands: Operation: Status Affected:	Decrement f [label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) 7
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 \qquad 0000 \qquad 0110 \qquad 0100$	DECF Syntax: Operands: Operation: Status Affected: Encoding:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffffff
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ $00 0000 0110 0100$ CLEWDT instruction resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f' If 'd' is 0
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the W
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ OUDIAL OF CONSTRUCTION OF CONSTRUCTURE OF CON	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result is
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \text{ instruction resets the} \\ Watchdog Timer. It also resets the \\ prescaler of the WDT. STATUS \\ bits TO and PD are set. \\ 1 \\ \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the pres <u>caler of the</u> WDT. STATUS bits TO and PD are set. 1 1	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD 00 0000 0110 0100 CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = 2	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 → (dest) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1 DECF CNT, 1 Before Instruction CNT = 0x01
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1Before InstructionCNT Z $=$ 0
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \ instruction \ resets the \\ Watchdog \ Timer. It also resets the \\ prescaler \ of \ the \ WDT. \ STATUS \\ bits \ TO \ and \ PD \ are \ set. \\ 1 \\ 1 \\ \hline \\ CLRWDT \\ \hline \\ Before \ Instruction \\ \ WDT \ counter \ = \ ? \\ After \ Instruction \\ \ WDT \ counter \ = \ 0x00 \\ \hline \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1Before Instruction $CNT = 0x01$ $Z = 0$ After Instruction
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT\\ 0 \rightarrow WDT \text{ prescaler,}\\ 1 \rightarrow \overline{TO}\\ 1 \rightarrow PD\\ \hline \overline{TO}, \overline{PD}\\ \hline \hline 00 & 0000 & 0110 & 0100\\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = 0 \overline{TO} = 1	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.11DECFCNT, 1Before Instruction $Z = 0$ After Instruction $CNT = 0x01$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • •
	After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1
GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>
Status Affected:	None
Encoding:	10 1kkk kkkk kkkk
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.
Words:	1
Cycles:	2
Example	GOTO THERE
	After Instruction PC = Address THERE

INCF	Increment f							
Syntax:	[label] INCF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	(f) + 1 \rightarrow (dest)							
Status Affected:	Z							
Encoding:	00 1010 dfff ffff							
Description:	incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
Words:	1							
Cycles:	1							
Example	INCF CNT, 1							
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1							

11.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

11.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three micro-controllers are programmed with firmware to provide LIN bus communication.

11.22 PICkit[™] 1 FLASH Starter Kit

A complete "development system in a box", the PICkit FLASH Starter Kit includes a convenient multi-section board for programming, evaluation, and development of 8/14-pin FLASH PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin FLASH PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin FLASH PIC microcontrollers, as well as many future planned devices.

11.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

11.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits. NOTES:

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62X				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +85°C for commercial and 0° C \leq TA \leq +70°C for commercial and						
	OULA		Opera	ating vo	oltage V	-4 VDD ran	$0^{\circ}C \le TA \le +125^{\circ}C$ for extended ge is the PIC16C62X range.			
Param . No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM P	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	 	6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 3.0V$			
D023A	Δ IVREF	VREF Current ⁽⁵⁾		_	300	μA	VDD = 3.0V			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Standard Operating Conditions (unless otherwise state								
PIC16C	R62XA-(04	Opera	ting ten	nperat	ure -4	$0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and				
PIC16C	R62XA-2	20		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial							
						-4	$0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended				
			Stand	Standard Operating Conditions (unless otherwise stated)							
			Opera	Operating temperature -40° C < Ta < +85^{\circ}C for industrial and							
PIC16L0	CR62XA	04	opora	$\Omega^{\circ}C < T\Delta < +70^{\circ}C$ for commerci							
						-40	1° C < TA < +125°C for extended				
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito					
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions				
NU.	1	(2)			050						
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V				
				0.400	1.0	μΑ					
				0.600	2.2	μΑ	VDD - 5.5V				
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.				
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V				
				200	950	nA A	$VDD = 3.0V^{*}$				
				0.600	2.2	μΑ	VDD = 5.5V				
D aga		(5)		5.0	9.0	μΑ					
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V				
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$				
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$				
D023		Comparator Current for each		30	60	μA	VDD = 4.0V				
00234		Vere Current ⁽⁵⁾		80	125						
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V				
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)				
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)				
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$				
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V				
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V				
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures				
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures				
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures				
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures				
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures				
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures				
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures				
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

PIC16C62X/C62XA/CR62XA				r d Ope ng tem	rating Co perature	ondition -40°C 0°C -40°C	The second second system is the second seco
PIC16LC62X/LC62XA/LCR62XA			Standa Operatir	r d Ope ng tem	perating C	onditio -40°C 0°C -40°C	ns (unless otherwise stated) \leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial and \leq TA \leq +125°C for extended
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss		0.2 VDD	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V	
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V	
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	-	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise
D031		with Schmitt Trigger input	Vss	—	0.2 VDD	V	
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V	
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V	
	Vih	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD		
D042		MCLR RA4/T0CKI	0.8 Vdd	_	Vdd	V	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	Vdd	V	(Note 1)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	Standar Operatir	r d Ope ng temp	rating peratur	Condit re -40° 0° -40°	ions (unless otherwise stated) $C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial and $C \leq TA \leq +125^{\circ}C$ for extended					
PIC16LC62X/LC62XA/LCR62XA			Standaı Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D040	Vih	Input High Voltage I/O ports with TTL buffer	2.0V	_	1/22	V	VDD = 4.5V to 5.5V			
D041		with Schmitt Trigger input	0.25 VDD + 0.8V		VDD VDD		otherwise			
D041			0.8 VDD	_	VDD	v				
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	VDD	V	(Note 1)			
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1, MCLR			±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	lı∟	Input Leakage Current ^(2, 3)								
					±1.0	μΑ	$Vss \leq V PIN \leq V DD, \ pin \ at \ hi\text{-impedance}$			
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance			
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1, MCLR	-		±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	Vol	Output Low Voltage								
D080		I/O ports	—	—	0.6	V	$IOL = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$			
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C			
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	$IOL = 1.6 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$			
			_	—	0.6	V	Iol = 1.2 mA, VDD = 4.5V, +125°C			

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X/C6	2XA/CR62XA	$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
PIC16L	Standa Operat	Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended							
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	_	_	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C		
			_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C		
			_	_	0.6	V	IoL = 1.2 mA, VDD = 4.5V, +125°C		
	Vон	Output High Voltage ⁽³⁾							
D090		I/O ports (Except RA4)	VDD-0.7		_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7		_	V	Іон = -2.5 mA, Vdd = 4.5V, +125°C		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	_	V	ІОН = -1.3 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7	_	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°С		
	Vон	Output High Voltage ⁽³⁾							
D090		I/O ports (Except RA4)	VDD-0.7	_	—	V	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°C		
			VDD-0.7	_	_	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С		
			VDD-0.7		—	V	IOH = -1.0 mA, VDD = 4.5V, +125°С		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA		
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			
		Capacitive Loading Specs on Output Pins							
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

*

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC [.]	TERISTICS	Standard C Operating t)pera empe	ting Conditi rature 0°C	ons(≤ T	(unless otherwise stated) A ≤ +70°C for commercial
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise
D031		with Schmitt Trigger input	Vss		0.2VDD	V	
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	—	0.3VDD	V	
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V	
	Vih	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0V	—	VDD	V	VDD = 4.5V to 5.5V, otherwise
D044		with Ochavitt Triansations t	0.25 VDD + 0.8		VDD		
D041					VDD		
D042		MCLR RA4/TUCKI		_	VDD	V	
D043		OSC1 (A1, HS and LP) OSC1 (in RC mode)		_	VDD	v	(Note 1)
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μА	$V_{DD} = 5.0V$. VPIN = Vss
	liL	Input Leakage Current ^(2, 3)					
		I/O ports (except PORTA)			±1.0	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \le VPIN \le VDD$
D063		OSC1, MCLR	_	—	±5.0	μA	$Vss \leq VPIN \leq VDD,$ XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C
		(2)	_	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C
			VDD-0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, +125°C
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C
*0450	1/25	On an Duain Ulink Matterna	VDD-0.7	_		V	IOH = -1.0 mA, VDD = 4.5V, +125°C
"D150	VOD	Open Drain High Voltage			8.5	V	RA4 pin
		Capacitive Loading Specs on					
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

 mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
 For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

FIGURE 12-14: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 12-15: BROWN-OUT RESET TIMING

TABLE 12-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000	—		ns	-40° to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5.0V, -40° to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5.0V, -40° to +85°C
34	Tioz	I/O hi-impedance from MCLR low		—	2.0	μs	
35	TBOR	Brown-out Reset Pulse Width	100*	_		μs	$3.7V \leq V\text{DD} \leq 4.3V$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)50
Р
Package Marking Information
Packaging Information
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit79
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register
Port RB Interrupt
PORTA
PORTB
Power Control/Status Register (PCON)
Power-Down Mode (SLEEP)
Power-On Reset (POR)
Power-up Timer (PWRT)
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices
R
RC Oscillator
Reset49
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

0	
Serialized Quick-Turnaround-Production (SQTP) De	vices 7
SLEEP Instruction	71
Software Simulator (MPLAB SIM)	76
Software Simulator (MPLAB SIM30)	76
Special Features of the CPU	45
Special Function Registers	17
Stack	23
Status Register	18
SUBLW Instruction	72
SUBWF Instruction	72
SWAPF Instruction	73

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	35
Timing Diagrams and Specifications	
TMR0 Interrupt	
TRIS Instruction	73
TRISA	25
TRISB	

v

Voltage Reference Module VRCON Register	43 43
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	.73