

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621at-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EPROM-Based 8-Bit CMOS Microcontrollers

Devices included in this data sheet:

Referred to collectively as PIC16C62X.

- PIC16C620 PIC16C620A
- PIC16C621 PIC16C621A
- PIC16C622 PIC16C622A
- PIC16CR620A

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
 - DC 40 MHz clock input
 - DC 100 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C620	512	80
PIC16C620A	512	96
PIC16CR620A	512	96
PIC16C621	1K	80
PIC16C621A	1K	96
PIC16C622	2K	128
PIC16C622A	2K	128

· Interrupt capability

- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

Special Microcontroller Features:

- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- · Wide operating range
 - 2.5V to 5.5V
- Commercial, industrial and extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical @ 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

1.0 GENERAL DESCRIPTION

The PIC16C62X devices are 18 and 20-Pin ROM/ EPROM-based members of the versatile PICmicro[®] family of low cost, high performance, CMOS, fullystatic, 8-bit microcontrollers.

All PICmicro microcontrollers employ an advanced RISC architecture. The PIC16C62X devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C620A, PIC16C621A and PIC16CR620A have 96 bytes of RAM. The PIC16C622(A) has 128 bytes of RAM. Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16C62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16C62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost effective One-Time-Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C62X midrange microcontroller families.

A simplified block diagram of the PIC16C62X is shown in Figure 3-1.

The PIC16C62X series fits perfectly in applications ranging from battery chargers to low power remote sensors. The EPROM technology makes

customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C62X very versatile.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to PIC16C62X family of devices (Appendix B). The PIC16C62X family fills the niche for users wanting to migrate up from the PIC16C5X family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. Third Party "C" compilers are also available.

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

9.3 RESET

The PIC16C62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOR)

Some registers are not affected in any RESET condition Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset,

MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 9-2. These bits are used in software to determine the nature of the RESET. See Table 9-5 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 9-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-5 for pulse width specification.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see

DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	—	—
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded cells are not used by the Watchdog Timer.

Note: – = Unimplemented location, read as "0"

+ = Reserved for future use

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the
Words:	1		next instruction is skipped.
Cycles:	1		tion fetched during the current
Example	BCF FLAG_REG, 7		instruction execution is discarded,
	Before Instruction FLAG REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.
	After Instruction	Words:	1
	FLAG REG = 0x47	Cycles:	1(2)
		Example	HERE BTFSC FLAG,1
BSF	Bit Set f		TRUE • DE
Syntax:	[<i>label</i>]BSF f,b		•
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE
Operation:	$1 \rightarrow (f \le b >)$		After Instruction
Status Affected:	None		PC = address TRUE
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE
Words:	1		
Cycles:	1		
Example	BSF FLAG_REG, 7		

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine		
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k		
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$		
Operation:	0 ≤ b < 7 skip if (f) = 1	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>		
Encoding:		Status Affected:	None		
Encouring.	If hit 'h' in register 'f' is '1', then the	Encoding:	10 Okkk kkkk kkkk		
Description.	next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is		
Words:	1		a two-cycle instruction.		
Cycles:	1(2)	vvords:	1		
Example	HERE BTFSS FLAG,1	Cycles:	2		
	TRUE • DE	Example	HERE CALL THER E		
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE		PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1		
		CLRF	Clear f		
		Syntax:	[<i>label</i>] CLRF f		
		Operands:	$0 \le f \le 127$		
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
		Status Affected:	Z		
		Encoding:	00 0001 1fff ffff		
		Description:	The contents of register 'f' are cleared and the Z bit is set.		
		Words:	1		
		Cycles:	1		
		Example	CLRF FLAG_REG		
			Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1		

RETFIE	Return from Interrupt								
Syntax:	[label] RETFIE								
Operands:	None								
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$								
Status Affected:	None								
Encoding:	00	0000	0000	1001					
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction								
Words:	1								
Cycles:	2								
Example	RETFIE								
	After Inte	rrupt PC = GIE =	TOS 1						

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \leq k \leq 255$							
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC							
Status Affected:	None							
Encoding:	11 01xx kkkk kkkk							
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							
Words:	1							
Cycles:	2							
Example	CALL TABLE;W contains table							
TABLE	;offset value • ;W now has table value •							
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;							
	• RETLW kn ;End of table							
	Before Instruction							
	W = 0x07 After Instruction W = value of k8							
RETURN	Return from Subroutine							
Svntax:	[<i>label</i>] RETURN							
Operands:	None							
Operation:	$TOS \rightarrow PC$							
Status Affected:	None							
Encoding:	00 0000 0000 1000							
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.							
Words:	1							
Cycles:	2							
Example	RETURN							
	After Interrupt PC = TOS							

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62X				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +85°C for commercial and 0° C \leq TA \leq +70°C for commercial and					
				$-40^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial a $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended Operating voltage VDD range is the PIC16C62X range.					
Param . No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM P	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	 	6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 3.0V$		
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	_	300	μA	VDD = 3.0V		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA				$\begin{array}{ c c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array}$						
PIC16LC62XA				dard O ating te	perati empera	ng Con ature -4 -4	$\begin{array}{ll} \mbox{ditions (unless otherwise stated)} \\ 10^{\circ}C &\leq TA \leq +85^{\circ}C \mbox{ for industrial and} \\ 0^{\circ}C &\leq TA \leq +70^{\circ}C \mbox{ for commercial and} \\ 0^{\circ}C &\leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$			
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D010	IDD	Supply Current ^(2, 4)	_	1.2 0.4	2.0 1.2	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode (Note 4)*			
				1.0 4.0	2.0 6.0	mA mA	Fosc = 10 MHz, VDD = 3.0V, WDT dis- abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis-			
			-	4.0 35	7.0 70	mA μA	abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis- abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled. LP mode			
D010	IDD	Supply Current ⁽²⁾	_	1.2	2.0 1.1	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4)			
			_	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT dis- abled, LP mode			
D020	IPD	Power-down Current ⁽³⁾	 		2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.			
D020	IPD	Power-down Current ⁽³⁾	 	 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

PIC16C PIC16C	R62XA R62XA	-04 -20	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended								
PIC16LCR62XA-04				dard O ating te	perati empera	ng Cor ature -	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions				
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-7, 12-8, 12-9				
D001	Vdd	Supply Voltage	2.5	—	5.5	V	See Figures 12-7, 12-8, 12-9				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	—	V	Device in SLEEP mode				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	_	V	Device in SLEEP mode				
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss		V	See section on Power-on Reset for details				
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss		V	See section on Power-on Reset for details				
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details				
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	_	V/ms	See section on Power-on Reset for details				
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared				
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared				
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*				
			_	500	900	μA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)				
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)				
				4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WD1 disabled [*] , HS				
				3.0	0.0 70		Fose = 20 MHz Vpp = 4 5V WDT disabled HS mode				
				55	10	μΛ	Fose = 32 kHz , VDD = 3.0V , WDT disabled, LP mode				
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*				
			-	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)				
			-	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode				

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

				Standard Operating Conditions (unless otherwise stated)							
PIC16C	R62XA-(04	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and								
PIC16C	R62XA-2	20		•			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and				
						-4	$0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended				
			Standard Operating Conditions (unless otherwise stated)								
			Opera	ting ten	nerat	ure -4	0° C < TA < +85°C for industrial and				
PIC16L0	CR62XA	04	opora	ling ton	porat		0° C < TA < +70°C for commercial and				
						-40	1° C < TA < +125°C for extended				
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito					
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions				
NU.	1	(2)			050						
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V				
				0.400	1.0	μΑ					
				0.600	2.2	μΑ	VDD - 5.5V				
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.				
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V				
				200	950	nA A	$VDD = 3.0V^{*}$				
				0.600	2.2	μΑ	VDD = 5.5V				
D aga		(5)		5.0	9.0	μΑ					
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V				
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$				
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$				
D023		Comparator Current for each		30	60	μA	VDD = 4.0V				
00234		Vere Current ⁽⁵⁾		80	125						
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V				
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)				
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)				
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$				
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V				
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V				
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures				
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures				
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures				
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures				
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures				
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures				
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures				
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16LC62X/LC62XA/LCR62XA			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min	Typ† Max Units Conditions				
D040	Vih	Input High Voltage I/O ports with TTL buffer	2.0V	_	1/22	V	VDD = 4.5V to 5.5V	
D041		with Schmitt Trigger input	0.25 VDD + 0.8V		VDD VDD		otherwise	
D041			0.8 VDD	_	VDD	V		
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 VDD 0.9 VDD	—	VDD	V	(Note 1)	
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1, MCLR			±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	lı∟	Input Leakage Current ^(2, 3)						
					±1.0	μΑ	$Vss \leq V PIN \leq V DD, \ pin \ at \ hi\text{-impedance}$	
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance	
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1, MCLR	-		±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	Vol	Output Low Voltage						
D080		I/O ports	—	—	0.6	V	$IOL = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$	
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C	
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	$IOL = 1.6 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$	
			_	—	0.6	V	Iol = 1.2 mA, VDD = 4.5V, +125°C	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

TABLE 12-1: COMPARATOR SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments
Input offset voltage			± 5.0	± 10	mV	
Input common mode voltage		0		Vdd - 1.5	V	
CMRR		+55*			δβ	
Response Time ⁽¹⁾			150*	400* 600*	ns ns	PIC16C62X(A) PIC16LC62X
Comparator mode change to output valid				10*	μS	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 12-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions:VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments
Resolution			VDD/24 VDD/32		LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Absolute Accuracy				<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Unit Resistor Value (R)			2K*		Ω	Figure 8-1
Settling Time ⁽¹⁾				10*	μs	
* These parameters are characteriz Note 1: Settling time measured w	zed but not hile VRR =	tested. 1 and VR<3:	:0> transitio	ons from 0000) to 1111	

DS30235J-page 102

12.8 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

2. 1990						
т						
F	Frequency	Т	Time			
Lowerca	ase subscripts (pp) and their meanings:					
рр						
ck	CLKOUT	OSC	OSC1			
io	I/O port	tO	TOCKI			
mc	MCLR					
Uppercase letters and their meanings:						
S						
F	Fall	Р	Period			
н	High	R	Rise			
I	Invalid (Hi-impedance)	V	Valid			
L	Low	Z	Hi-Impedance			

FIGURE 12-11: LOAD CONDITIONS

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manag	er Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16C62X	_iterature Number: DS30235J
Que	stions:	
1. \	What are the best features of this	document?
-		
<u>-</u>		
2. I	ar hardware and software development needs?	
-		
3. [Do you find the organization of thi	s document easy to follow? If not, why?
_		
_		
4. \	What additions to the document d	o you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the documen	t could be made without affecting the overall usefulness?
-		
- 6 I	s there any incorrect or misleadin	a information (what and where)?
0. 1		
-		
7. H	How would you improve this docu	ment?
_		
-		