

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	· .
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

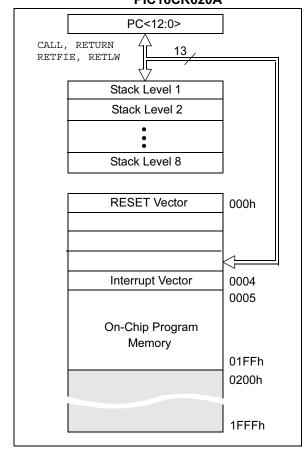
NOTES:

Name	DIP/SOIC Pin #	SSOP Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	I	ST/CMOS	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin out- puts CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an Active Low Reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	17	19	I/O	ST	Analog comparator input
RA1/AN1	18	20	I/O	ST	Analog comparator input
RA2/AN2/VREF	1	1	I/O	ST	Analog comparator input or VREF output
RA3/AN3	2	2	I/O	ST	Analog comparator input /output
RA4/T0CKI	3	3	I/O	ST	Can be selected to be the clock input to the Timer timer/counter or a comparator output. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	7	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an externa interrupt pin.
RB1	7	8	I/O	TTL	
RB2	8	9	I/O	TTL	
RB3	9	10	I/O	TTL	
RB4	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	13	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock
RB7	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5,6	Р		Ground reference for logic and I/O pins.
Vdd	14	15,16	Р	_	Positive supply for logic and I/O pins.
Legend:	O = out — = No	•	I/O = inp I = Input	ut/output	P = power ST = Schmitt Trigger input

TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16C620/PIC16C620 PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

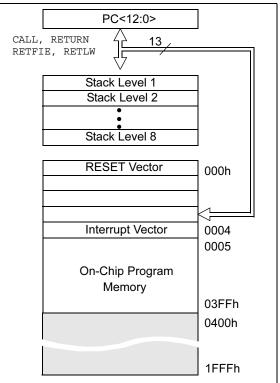
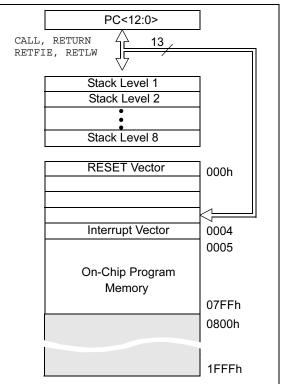



FIGURE 4-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

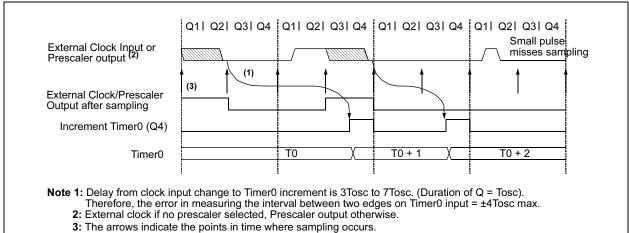
Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7					•		bit 0
bit 7	RBPU: PO	RTB Pull-u	p Enable bi	it				
		3 pull-ups ai 3 pull-ups ai		y individual	port latch va	alues		
bit 6	INTEDG: I	nterrupt Edg	e Select bit	-				
			edge of RB0 edge of RB0					
bit 5	TOCS: TMI	R0 Clock Sc	ource Select	bit				
		ion on RA4/ Il instruction	T0CKI pin cycle clock	(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	Edge Select	bit				
				ition on RA4 ition on RA4				
bit 3	PSA: Pres	caler Assigr	iment bit		-			
			ned to the W ned to the Ti	DT mer0 module	Э			
bit 2-0	PS<2:0> : [Prescaler Ra	ate Select bi	ts				
	E	Bit Value T	MR0 Rate	WDT Rate				
	-	000 001	1:2 1:4	1:1 1:2				
		010 011	1 : 8 1 : 16	1:4 1:8				
		100	1:32	1:16				
		101	1:64	1:32				
		110	1:128	1:64				
		111	1:256	1 : 128				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

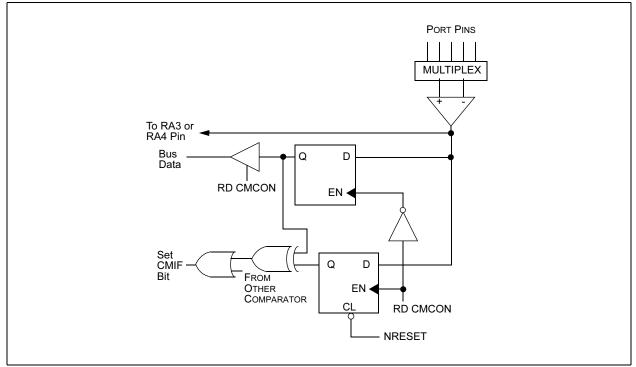
When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).


7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	;	4 Inputs Muxed
MOVWF	CMCON	;	to 2 comps.
BSF	STATUS, RPO	;	go to Bank 1
MOVLW	0x0F	;	RA3-RA0 are
MOVWF	TRISA	;	inputs
MOVLW	0xA6	;	enable VREF
MOVWF	VRCON	;	low range
		;	set VR<3:0>=6
BCF	STATUS, RPO	;	go to Bank O
CALL	DELAY10	;	10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Note: - = Unimplemented, read as "0"

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

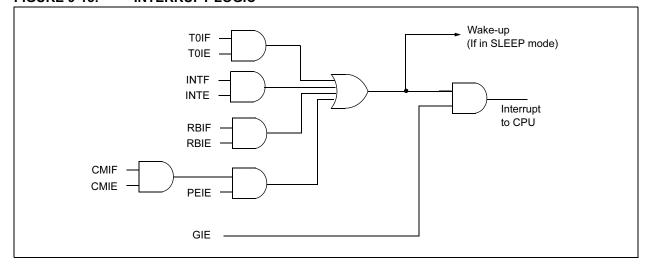

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

9.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up, is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q	3 Q4 Q1 Q2 Q3 Q4 Q	Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4
OSC1 /_/\		AAAAA				
CLKOUT(4)		Tost(2)	<u> </u>		\ <u>`</u>	
INT pin	1 I		1 1		1	
NTF flag			Interrupt Latend	SV.		
INTCON<1>)		≉	(Note 2)	,		
GIE bit INTCON<7>)		Processor in SLEEP	1			
INSTRUCTION FLOW			1 1 1		1	
PC X PC	<u>Υ PC+1 Χ</u>	PC+2	X PC+2	PC + 2	<u>χ 0004h χ</u>	0005h
Instruction { Inst(PC) =	SLEEP Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 9-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT

3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk		
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0,
	the W register.		the result is stored in the W register.
Words:	1		If 'd' is 1, the result is stored back in
Cycles:	1		register 'f'.
Example 1:	SUBLW 0x02	Words:	1
·	Before Instruction	Cycles:	1
	W = 1	Example 1:	SUBWF REG1,1
	C = ?		Before Instruction
	After Instruction		REG1= 3 W = 2
	W = 1 C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2		REG1= 1
	C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0	·	REG1= 2
	C = 1; result is zero		W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction
	After Instruction		REG1= 0 W = 2
	W = 0 x F F		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1= 1 W = 2
			W = 2 C = ?
			After Instruction
			REG1= 0xFF
			W = 2
			C = 0; result is negative

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C62XA PIC16LC62XA				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	/p† Max Units Conditions					
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details			
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	ARACTER	Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V
			—	—	5.0	μA	VDD = 4.5V*
			—	—	9.0	μA	VDD = 5.5V
		(5)	—	—	15	μA	VDD = 5.5V Extended
D022	Δ IWDT	WDT Current ⁽⁵⁾		6.0	10	μA	VDD = 4.0V
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$
D022A D023	∆IBOR ∆ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V
		Comparator ⁽⁵⁾				1	
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA	
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures
		XT Oscillator Operating Frequency	0	-	4	MHz	All temperatures
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP

mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC	TERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial							
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions				
	VIL	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	—	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise				
D031		with Schmitt Trigger input	Vss		0.2VDD	V					
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)				
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V					
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V					
	Vih	Input High Voltage									
		I/O ports									
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V, otherwise				
			0.25 VDD + 0.8		Vdd						
D041		with Schmitt Trigger input	0.8 VDD		Vdd						
D042		MCLR RA4/T0CKI	0.8 VDD	—	Vdd	V					
D043		OSC1 (XT, HS and LP)	0.7 VDD	—	Vdd	V					
D043A		OSC1 (in RC mode)	0.9 VDD				(Note 1)				
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μA	VDD = 5.0V, VPIN = VSS				
	lı∟	Input Leakage Current ^(2, 3)									
		I/O ports (except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance				
D060		PORTA	—	—	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance				
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq VPIN \leq VDD$				
D063		OSC1, MCLR	_	—	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration				
	Vol	Output Low Voltage									
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C				
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C				
D083		OSC2/CLKOUT (RC only)	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C				
					0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C				
	Vон	Output High Voltage ⁽³⁾									
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C				
			VDD-0.7	—	—	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C				
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40° to +85°С				
			VDD-0.7	_	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°С				
*D150	Vod	Open Drain High Voltage			8.5	V	RA4 pin				
		Capacitive Loading Specs on Output Pins									
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.				
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF					
		parameters are characterized but not	<u> </u>	L	~~	۳.	1				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins		Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Sym	Min	Typ ⁽¹⁾	Мах	Units	Conditions
Supply Voltage	Vdd	4.5	—	5.5	V	HS Option from 20 - 40 MHz
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected
Input Low Voltage OSC1	VIL	Vss	—	0.2Vdd	V	HS mode, OSC1 externally driven
Input High Voltage OSC1 VIH 0.8VDD			Vdd	V	HS mode, OSC1 externally driven	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, \overline{MCLR} = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)

AC CHARACTERISTICS All Pins Except Power Supply Pir	IS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
External CLKIN Frequency	Fosc	20	—	40	MHz	HS mode, OSC1 externally driven	
External CLKIN Period	Tosc	25	_	50	ns	HS mode (40), OSC1 externally driven	
Clock in (OSC1) Low or High Time	TosL, TosH	6	—		ns	HS mode, OSC1 externally driven	
Clock in (OSC1) Rise or Fall Time	TosR, TosF		_	6.5	ns	HS mode, OSC1 externally driven	
OSC1↑ (Q1 cycle) to Port out valid	TosH2ıoV		—	100	ns	_	
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	—	_	ns	—	

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

PIC16C62X

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

		INCHES*		MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

PIC16C62X

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manag	er Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16C62X	_iterature Number: DS30235J
Que	stions:	
1. \	What are the best features of this	document?
-		
<u>-</u>		
2. I	How does this document meet yo	ur hardware and software development needs?
-		
3. [Do you find the organization of thi	s document easy to follow? If not, why?
_		
_		
4. \	What additions to the document d	o you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the documen	t could be made without affecting the overall usefulness?
-		
- 6 I	s there any incorrect or misleadir	a information (what and where)?
0. 1		
-		
7. H	How would you improve this docu	ment?
_		
-		