

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

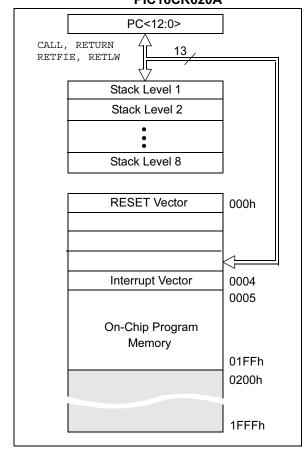
Details

E-XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c621t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16C620/PIC16C620 PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

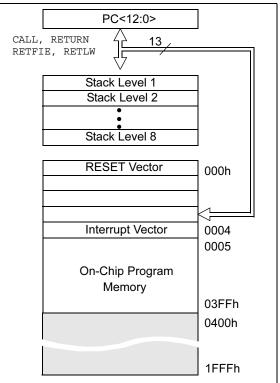
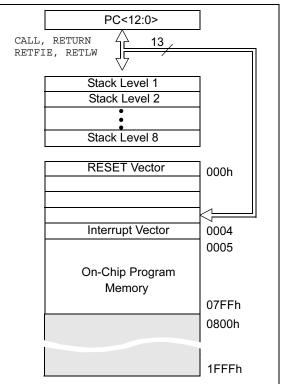



FIGURE 4-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

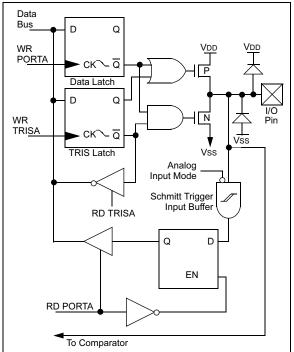
REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	-	ter Bank Sel	-	d for indirect	addressing)		
		, 3 (100h - 1 , 1 (00h - FF						
		t is reserved		16C62X; alv	/ays maintai	n this bit cle	ar.	
bit 6-5		Register Ban			-			
		1 (80h - FFh						
		0 (00h - 7Fh						
	Each bank clear.	is 128 bytes	. The RP1 t	oit is reserve	ed on the PIC	C16C62X; a	lways mainta	ain this bit
bit 4	TO: Time-c	out bit						
		ower-up, CLI	RWDT instruc	ction. or SLE	EP instruction	on		
		time-out oc		,				
bit 3	PD: Power	-down bit						
	-	ower-up or b cution of the	-		n			
bit 2	Z: Zero bit							
		sult of an arit sult of an arit)		
bit 1		arry/borrow b		• •)(for borrow	the polarity
	is reversed	-	ζ ,		·			
		-out from the				rred		
		ry-out from th						
bit 0	•	orrow bit (AD						
	•	-out from the ry-out from th	-					
	Note:	For borrow t	he polarity i	s reversed.	A subtraction	on is execut	ed by addin	g the two's
		complement						s, this bit is
		loaded with e	either the hig	gh or low or	der bit of the	source reg	ister.	
	Legend:	L. L. 14					hit on all	0
	R = Reada			ritable bit		•	bit, read as	
	- n = Value	at POR	1′ = Bi	it is set	'0' = Bit i	scleared	x = Bit is u	nknown

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

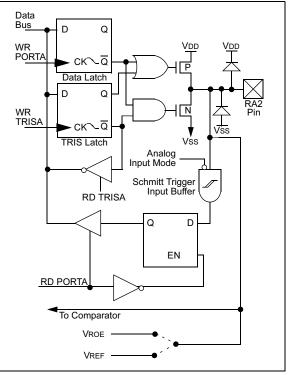
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

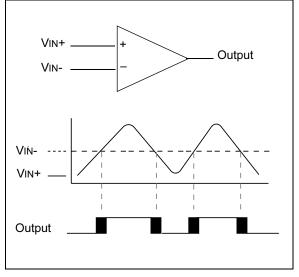
CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10µs delay
MOVF	CMCON,F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable


7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

9.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance or one with parallel resonance.

Figure 9-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 9-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

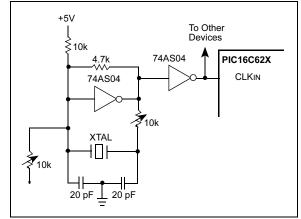
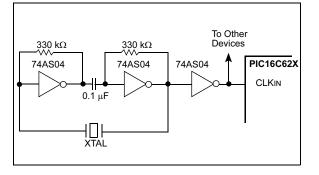



Figure 9-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 9-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

9.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 9-5 shows how the R/C combination is connected to the PIC16C62X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high REXT values (e.g., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 13.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 13.0 for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 9-5: RC OSCILLATOR MODE

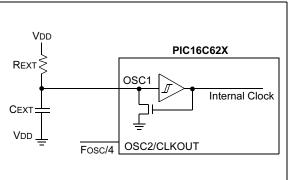


TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
8Ch	PIE1	_	CMIE	_	_	—	_	—	_	-0	-0

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 9-3 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-3:

- · Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-3: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, ;could be in either bank
SWAPF	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regardless ;of current bank
MOVWF	STATUS_TEMP	;save status to bank 0 ;register
:		
:	(ISR)	
:		
SWAPF	STATUS_TEMP, W	;swap STATUS_TEMP register ;into W, sets bank to origi- nal ;state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up, is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q	3 Q4 Q1 Q2 Q3 Q4 Q	Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4
OSC1 //////		AAAAA				
CLKOUT(4)		Tost(2)	<u> </u>		\ <u>`</u>	
INT pin	1 I		1 1		1	
NTF flag			Interrupt Latend	SV.		
INTCON<1>)		≉	(Note 2)	,		
GIE bit INTCON<7>)		Processor in SLEEP	1			
INSTRUCTION FLOW			1 1 1		1	
PC X PC	<u>Υ PC+1 Χ</u>	PC+2	X PC+2	PC + 2	<u>χ 0004h χ</u>	0005h
Instruction { Inst(PC) =	SLEEP Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 9-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT

3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
Words: Cycles: Example	instruction. 1 1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		Before Instruction $\begin{array}{rcl} \text{RESULT} &= & 0x13 \\ W &= & 0x91 \\ \end{array}$ After Instruction $\begin{array}{rcl} \text{RESULT} &= & 0x13 \\ W &= & 0x93 \\ Z &= & 1 \\ \end{array}$
	Before Instruction	MOVLW	Move Literal to W
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1	Operands:	$0 \le k \le 255$
	if CNT= 0, PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if CNT≠ 0,	Status Affected:	None
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Syntax:	[<i>label</i>] IORLW k	Words:	1
Operands:	$0 \le k \le 255$	Cycles:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A
Status Affected:	Z	Example	After Instruction
Encoding:	11 1000 kkkk kkkk		W = 0x5A
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
	Before Instruction W = 0x9A After Instruction		

W = Z =

0xBF 1

SWAPF	Swap Ni	bbles in	f			
Syntax:	[label]	SWAPF	f,d			
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	(f<3:0>) - (f<7:4>) -		<i>,</i> .			
Status Affected:	None					
Encoding:	00	1110	dfff	ffff		
Description:	The upper register 'f 0, the res register. I placed in	" are excl sult is plac If 'd' is 1,	hanged ced in ^v the res	d. If 'd' is W		
Words:	1					
Cycles:	1					
Example	SWAPF	REG,	0			
	Before In	struction				
		REG1	= (DxA5		
	After Inst	ruction				
		REG1 W		0xA5 0x5A		

TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register f;				
Status Affected:	None				
Encoding:	00 0000 0110 Offf				
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.				

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i> XORLW k]
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Encoding:	11 1010 kkkk kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	XORLW 0xAF
	Before Instruction
	W = 0xB5
	After Instruction
	W = 0x1A
XORWF	Evolucius OD W with f
	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Syntax:	[<i>label</i>] XORWF f,d $0 \le f \le 127$
Syntax: Operands:	$ \begin{array}{ll} \textit{[label]} & XORWF & f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \end{array} $
Syntax: Operands: Operation:	$ \begin{array}{ll} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) & \text{XOR.} & (\textit{f}) \rightarrow (\textit{dest}) \end{array} $
Syntax: Operands: Operation: Status Affected:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{array}{c c} \textit{[label]} & \text{XORWF} & \textit{f,d} \\ 0 \leq \textit{f} \leq 127 \\ d \in [0,1] \\ (W) . \text{XOR.} (\textit{f}) \rightarrow (\text{dest}) \\ \hline Z \\ \hline \hline 00 & 0110 & \text{dfff} & \text{ffff} \\ \hline \text{Exclusive OR the contents of the} \\ W \text{ register with register 'f'. If 'd' is} \\ 0, \text{ the result is stored in the W} \\ \hline \text{register. If 'd' is 1, the result is} \end{array}$
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(W) . \text{XOR. } (f) \rightarrow (\text{dest})$ Z $\boxed{00 \qquad 0110 \text{dfff} \text{ffff}}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$[label] XORWF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z $\boxed{00 \qquad 0110 \qquad dfff \qquad ffff}$ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] XORWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z 00 0110 dfff ffff Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF REG 1 \\ \end{bmatrix}$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF } f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ REG & = 0xAF \\ \end{bmatrix}$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} \text{ XORWF} f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG &= 0xAF \\ W &= 0xB5 \\ \end{bmatrix}$

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- · Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to VDD +0.6V
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	300 mA
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, Iок (Vo <0 or Vo>VDD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)) x IOH} + Σ (VOI x IOL).

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

				Standard Operating Conditions (unless otherwise stated)							
PIC16C	62X		Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C = 0^{\circ}C \le TA \le +70^{\circ}C$				$\begin{array}{ll} 0^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial and} \\ 0^{\circ}C & \leq TA \leq +125^{\circ}C \text{ for extended} \end{array}$				
PIC16LC62X				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions				
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V VDD=3.0V				
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V				
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures				
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C	C62XA		$\begin{array}{l lllllllllllllllllllllllllllllllllll$						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5		
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared		
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

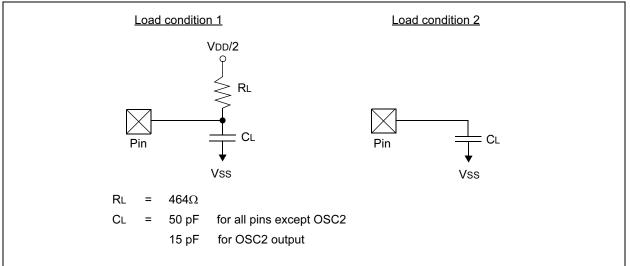
5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

PIC16CR62XA-04 PIC16CR62XA-20				$\begin{array}{llllllllllllllllllllllllllllllllllll$								
PIC16LCR62XA-04						ature -	$\begin{array}{ll} \mbox{ditions (unless otherwise stated)} \\ 40^{\circ} C &\leq TA \leq +85^{\circ} C \mbox{ for industrial and} \\ 0^{\circ} C &\leq TA \leq +70^{\circ} C \mbox{ for commercial and} \\ 40^{\circ} C &\leq TA \leq +125^{\circ} C \mbox{ for extended} \end{array}$					
Param. No.	Sym	Characteristic	Min	Тур†	Мах	ax Units Conditions						
D001	Vdd	Supply Voltage	3.0	—	5.5	V	See Figures 12-7, 12-8, 12-9					
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-7, 12-8, 12-9					
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode					
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*		V	Device in SLEEP mode					
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss		V	See section on Power-on Reset for details					
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details					
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—		V/ms	See section on Power-on Reset for details					
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details					
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared					
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared					
D010	Idd	Supply Current ⁽²⁾	_	1.2 500	1.7 900	mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode,					
			_	1.0	2.0	mA	(Note 4) Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)					
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS					
			—	3.0	6.0	mA	mode					
				35	70	μA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode					
D010	IDD	Supply Current ⁽²⁾	—	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*					
			—	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)					
			—	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode					

12.8 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

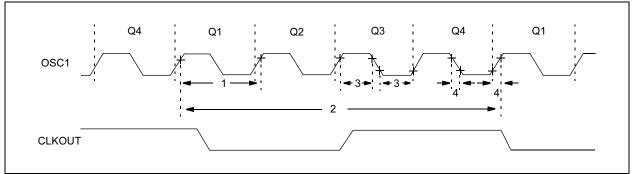
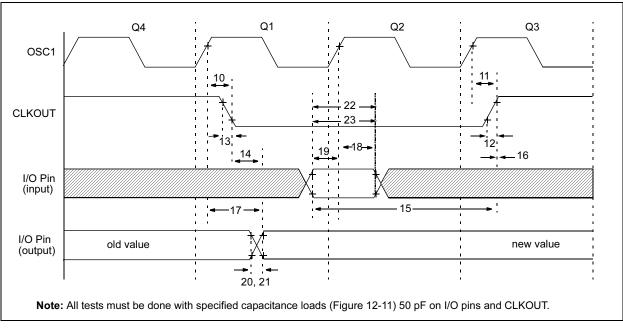

2. Tpp3			
т			
F	Frequency	Т	Time
Lowerca	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	osc	OSC1
io	I/O port	t0	ТОСКІ
mc	MCLR		
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 12-11: LOAD CONDITIONS

12.9 Timing Diagrams and Specifications

FIGURE 12-12: EXTERNAL CLOCK TIMING

TABLE 12-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	4	MHz	XT and RC Osc mode, VDD=5.0V
			DC	_	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	DC	—	4	MHz	RC Osc mode, VDD=5.0V
			0.1	—	4	MHz	XT Osc mode
			1	—	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	—	_	ns	XT and RC Osc mode
			50	—	—	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250	—	_	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
2	TCY	Instruction Cycle Time ⁽¹⁾	1.0	Fosc/4	DC	μS	Tcys=Fosc/4
3*	TosL,	External Clock in (OSC1) High or	100*	—	_	ns	XT oscillator, Tosc L/H duty cycle
	TosH	Low Time	2*	—	—	μs	LP oscillator, Tosc L/H duty cycle
			20*	_	—	ns	HS oscillator, Tosc L/H duty cycle
4*	TosR,	External Clock in (OSC1) Rise or	25*	_	_	ns	XT oscillator
	TosF	Fall Time	50*	—	—	ns	LP oscillator
			15*	—	—	ns	HS oscillator

2: * These parameters are characterized but not tested.

3: † Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		MILLIMETERS			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		20			20		
Pitch	р		.026			0.65		
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.278	.284	.289	7.06	7.20	7.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	φ	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

NOTES: