

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622-20e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C620(A) and PIC16CR620A address 512 x 14 on-chip program memory. The PIC16C621(A) addresses 1K x 14 program memory. The PIC16C622(A) addresses 2K x 14 program memory. All program memory is internal.

The PIC16C62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C62X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7					•		bit 0
bit 7	RBPU: PO	RTB Pull-u	p Enable bi	it				
		3 pull-ups ai 3 pull-ups ai		y individual	port latch va	alues		
bit 6	INTEDG: I	nterrupt Edg	e Select bit	-				
			edge of RB0 edge of RB0					
bit 5	TOCS: TMI	R0 Clock Sc	ource Select	bit				
		ion on RA4/ Il instruction	T0CKI pin cycle clock	(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	Edge Select	bit				
				ition on RA4 ition on RA4				
bit 3	PSA : Prescaler Assignment bit							
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 							
bit 2-0	PS<2:0>: Prescaler Rate Select bits							
	E	Bit Value T	MR0 Rate	WDT Rate				
	-	000 001	1:2 1:4	1:1 1:2				
		010 011	1 : 8 1 : 16	1:4 1:8				
		100	1:32	1:16				
		101	1:64	1:32				
		110	1:128	1:64				
	111 1 : 256 1 : 128							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

E PE Global Internables all un isables all in Peripheral nables all p TMR0 Ove nables the T isables the	N-0 R/W-0 EIE TOIE rrupt Enable bit n-masked interrunts Interrupts Interrupt Enable n-masked periphoreripheral interrupt erflow Interrupt Entrupt TMR0 interrupt	e bit heral interrupt pts	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF bit 0
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	s			bit 0
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S			
nables all u isables all in Peripheral nables all u isables all p TMR0 Ove nables the isables the	n-masked interru nterrupts Interrupt Enable n-masked periph peripheral interru rflow Interrupt En TMR0 interrupt	e bit heral interrupt pts	S			
sables all in Peripheral nables all un sables all p TMR0 Ove nables the T isables the	nterrupts Interrupt Enable n-masked periph peripheral interru erflow Interrupt Er TMR0 interrupt	e bit heral interrupt pts	s			
nables all u isables all p TMR0 Ove nables the isables the	n-masked periph peripheral interru rflow Interrupt Er TMR0 interrupt	neral interrupt pts	S			
sables all p TMR0 Ove nables the sables the	peripheral interru erflow Interrupt Er TMR0 interrupt	pts	S			
TMR0 Ove nables the sables the	rflow Interrupt Er TMR0 interrupt					
nables the isables the	TMR0 interrupt	nable bit				
sables the						
	I MRU interrupt					
	External Interrupt					
	RB0/INT externa RB0/INT externa					
	hange Interrupt E					
	RB port change i					
	RB port change	•				
TMR0 Ove	rflow Interrupt Fl	ag bit				
MR0 registe	er has overflowed	d (must be cle	eared in soft	ware)		
MR0 registe	er did not overflov	W				
RB0/INT E	xternal Interrupt	Flag bit				
				red in softwa	are)	
RB Port Cl	hange Interrupt F	Flag bit				
'hen at leas		•	-	(must be cle	ared in softw	ware)
	ne RB0/INT ne RB0/INT RB Port C hen at leas	ne RB0/INT external interrune RB0/INT external interrun RB Port Change Interrupt I hen at least one of the RB<	ne RB0/INT external interrupt did not occ RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins cha one of the RB<7:4> pins have changed s	ne RB0/INT external interrupt occurred (must be clea ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state one of the RB<7:4> pins have changed state	ne RB0/INT external interrupt occurred (must be cleared in softwa ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cle	ne RB0/INT external interrupt occurred (must be cleared in software) ne RB0/INT external interrupt did not occur RB Port Change Interrupt Flag bit hen at least one of the RB<7:4> pins changed state (must be cleared in softwore) one of the RB<7:4> pins have changed state

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)
---------------	--------------------------------------

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.4 PIE1 Register

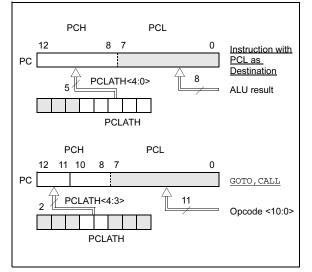
This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)							
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
		CMIE	_			—	_	—
	bit 7 bit 0							bit 0
bit 7	Unimplemented: Read as '0'							
bit 6	CMIE : Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt							
bit 5-0	Unimplemented: Read as '0'							
	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unitable bit							

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of			
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User			
	software should ensure the appropriate			
	interrupt flag bits are clear prior to enabling			
	an interrupt.			


REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

ER 4-5:	PIRT REGISTER (ADDRESS UCH)								
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
		CMIF		—	_				
	bit 7							bit 0	
bit 7	Unimplemented: Read as '0'								
bit 6	CMIF: Comparator Interrupt Flag bit								
	1 = Comparator input has changed								
	0 = Comparator input has not changed								
bit 5-0	Unimplemented: Read as '0'								
	Legend:								
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	U = Unimplemented bit, read as '0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown	

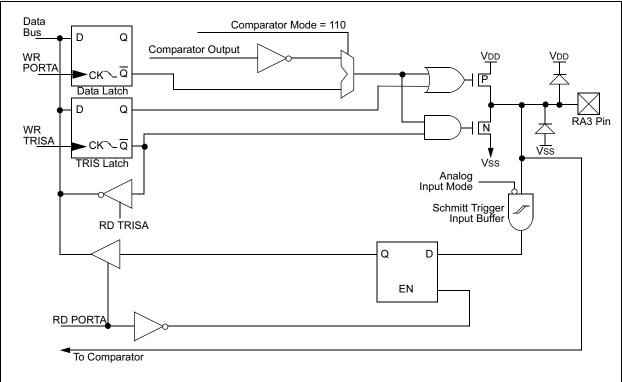
4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

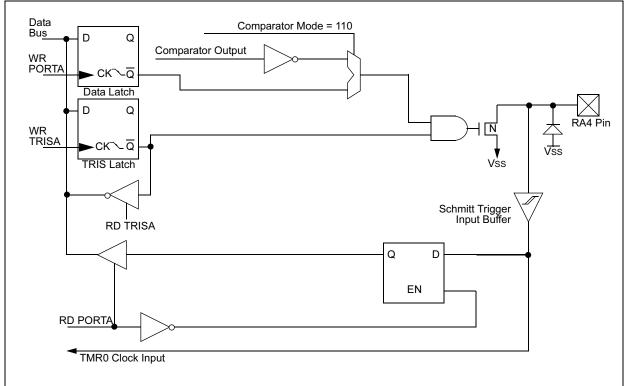
FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).


4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.


The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to WDT.)

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

		,
1.BCF	STATUS, RPO	;Skip if already in ;Bank 0
2.CLRWDT		;Clear WDT
3.CLRF	TMR0	;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b;	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	;are required only if ;desired PS<2:0> are
7.CLRWDT		;000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	;desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2:

CHANGING PRESCALER (WDT→TIMER0)

	•	,
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and
		;clock source
MOVWF	OPTION REG	
BCF	STATUS, RPO	

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 r	nodule regi	ster						XXXX XXXX	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_		_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by TMR0 module.

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

			(,				
	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT : Co	omparator 2	output					
	1 = C2 VIN	+ > C2 VIN-						
	0 = C2 VIN	+ < C2 VIN-						
bit 6	C1OUT : Co	omparator 1	output					
	1 = C1 VIN	+ > C1 VIN-						
	0 = C1 VIN	+ < C1 VIN-						
bit 5-4	Unimplem	ented: Read	d as '0'					
bit 3	CIS: Comp	arator Input	Switch					
	When CM<	<2:0>: = 001	:					
	1 = C1 VIN-	- connects to	o RA3					
	0 = C1 VIN	- connects to	o RA0					
	When CM<	<2:0> = 010:						
		 connects to 						
		I- connects t						
		- connects to						
	C2 VIN	I- connects t	0 RA1					
bit 2-0	CM<2:0>:	Comparator	mode.					
	Legend:							

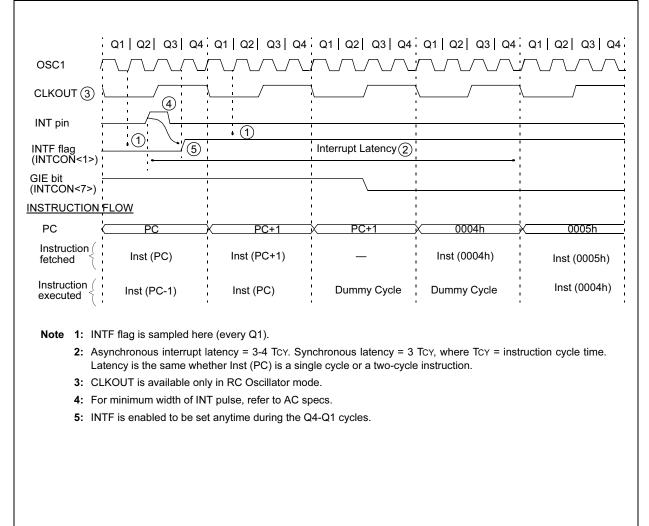
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF
	interrupt flag may not get set.

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

9.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up, is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q	3 Q4 Q1 Q2 Q3 Q4 Q	Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4
OSC1 //////						
CLKOUT(4)		Tost(2)	<u> </u>		\ <u>`</u>	
INT pin	1 I		1 1		1	
NTF flag			Interrupt Latend	SV.		
INTCON<1>)		≉	(Note 2)	,		
GIE bit INTCON<7>)		Processor in SLEEP	1			
INSTRUCTION FLOW			1 1 1		1	
PC X PC	<u>Υ PC+1 Χ</u>	PC+2	X PC+2	PC + 2	<u>χ 0004h χ</u>	0005h
Instruction { Inst(PC) =	SLEEP Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

FIGURE 9-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT

3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

PIC16C62X

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$						
Status Affected:	None						
Encoding:	00 0000 0000 1001						
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETFIE						
	After Interrupt PC = TOS GIE = 1						

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE;W contains table
TABLE	;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Encoding:	00 0000 0000 1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Words:	1
Cycles:	2
Example	RETURN
	After Interrupt PC = TOS

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

NOTES:

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	dard O	perati	ng Con	ditions (unless otherwise stated)
PIC16C	PIC16C62X				empera		$\begin{array}{ll} 0^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial and} \\ 0^{\circ}C & \leq TA \leq +125^{\circ}C \text{ for extended} \end{array}$
PIC16LC62X			Opera Opera	ating te ating vo	empera	ture -4 -4 VDD ran	ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended ge is the PIC16C62X range.
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each		6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD enabled, VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD = 3.0V$ $BOD enabled, VDD = 5.0V$ $VDD = 3.0V$
D023A	P ∆IVREF	Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾	—	—	300	μA	VDD = 3.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	 	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16CR62XA-04 PIC16CR62XA-20	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16LCR62XA-04	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param. Sym Characteristic No.	Min Typ† Max Units Conditions					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	$ \begin{array}{ c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array} $						
PIC16L0	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq Ta \leq +85^{\circ}$ C for industrial and 0° C $\leq Ta \leq +70^{\circ}$ C for commercial and -40° C $\leq Ta \leq +125^{\circ}$ C for extended						
Param. Sym Characteristic No.			Min	Тур†	Мах	Units	Conditions
	Vih	Input High Voltage					
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise
D041		with Schmitt Trigger input	0.8 Vdd	_	VDD		
D042		MCLR RA4/T0CKI	0.8 VDD	_	Vdd	V	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	-	Vdd	V	(Note 1)
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss ≤ VPIN ≤ VDD, pin at hi-impedance
D060		PORTA	_	_	±0.5	μA	$Vss \leq VPIN \leq VDD$, pin at hi-impedance
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq VPIN \leq VDD$
D063		OSC1, MCLR	_	_	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	lı∟	Input Leakage Current ^(2, 3)					
		I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	-	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance
D061		RA4/T0CKI	-	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C
			—	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to $+85^{\circ}$ C
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins				Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Sym	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
Supply Voltage	Vdd	4.5	—	5.5	V	HS Option from 20 - 40 MHz		
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode		
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected		
Input Low Voltage OSC1	VIL	Vss	—	0.2Vdd	V	HS mode, OSC1 externally driven		
Input High Voltage OSC1	Vih	0.8Vdd		Vdd	V	HS mode, OSC1 externally driven		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

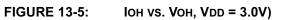
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

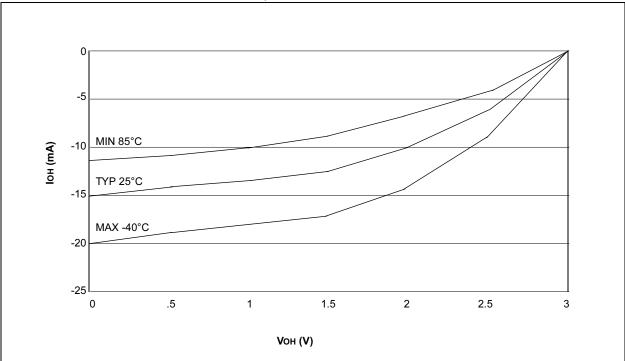
a) The test conditions for all IDD measurements in Active Operation mode are:

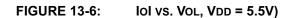
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

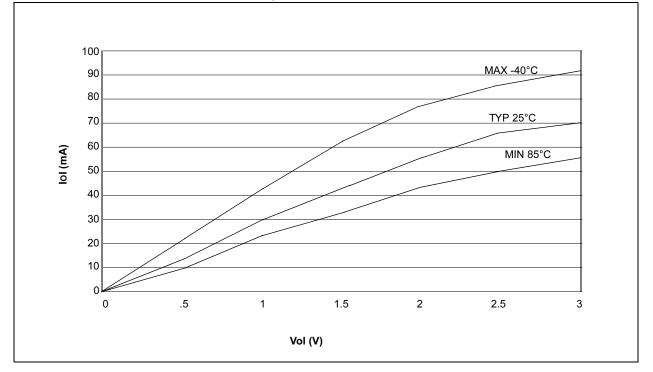
T0CKI = VDD, \overline{MCLR} = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.


12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)


AC CHARACTERISTICS All Pins Except Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions	
External CLKIN Frequency	Fosc	20	—	40	MHz	HS mode, OSC1 externally driven	
External CLKIN Period	Tosc	25	_	50	ns	HS mode (40), OSC1 externally driven	
Clock in (OSC1) Low or High Time	TosL, TosH	6	—		ns	HS mode, OSC1 externally driven	
Clock in (OSC1) Rise or Fall Time	TosR, TosF		_	6.5	ns	HS mode, OSC1 externally driven	
OSC1↑ (Q1 cycle) to Port out valid	TosH2ıoV		—	100	ns	_	
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	—	_	ns	—	


Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

PIC16C62X

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

DeviceFrequency RangeTemperature RangePackageDevicePIC16C62X: VDD range 3.0V to 6.0V PIC16C62XAT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XAT: VDD range 2.5V to 5.5V PIC16LC620AT: VDD range 2.0V to 5.5V <th>PART NO.</th> <th><u>-xx</u></th> <th>¥</th> <th><u>/xx</u></th> <th>xxx</th> <th>Ex</th> <th>amples:</th>	PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	Ex	amples:
PIC16C62XT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V 	Device			Package	Pattern	a)	PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
$\begin{array}{rcl} 04 & 4 \text{ MHz} (XT \text{ and } \text{RC osc}) \\ 20 & 20 \text{ MHz} (\text{HS osc}) \\ \end{array}$ Temperature Range - = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Device	PIC16C62 PIC16C62 PIC16C62 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16CR PIC16CR PIC16CR	2XT: VDD range 3.0 2XA: VDD range 3.0 2XAT: VDD range 3.6 22XT: VDD range 2.5 32XT: VDD range 2.5 32XA: VDD range 2 52XA: VDD range 2 620A: VDD range 2 620A: VDD range R620A: VDD range	W to 6.0V (Tap OV to 5.5V .0V to 5.5V (Ta 5V to 6.0V .5V to 6.0V (Ta .5V to 5.5V .5V to 5.5V 2.5V to 5.5V	pe and Reel) pe and Reel) ape and Reel) ape and Reel)) b)	PIC16LC622-04I/SO = Industrial temp., SOIC package, 200 kHz, extended VDD limits.
Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Frequency Rang	04 4 MH	Iz (XT and RC osc	;)			
SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Temperature Rar	= -	-40°C to +85°C				
	Package	SO = SS =	SOIC (Gull Wing, SSOP (209 mil)	• •			
Pattern 3-Digit Pattern Code for QTP (blank oth	Pattern	3-Digit Pa	ttern Code for QTF	O (blank otherward)	<i>i</i> ise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.