
Microchip Technology - PIC16C622-20I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity -

Peripherals Brown-out Detect/Reset, POR, WDT

Number of I/O 13

Program Memory Size 3.5KB (2K x 14)

Program Memory Type OTP

EEPROM Size -

RAM Size 128 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 6V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 18-SOIC (0.295", 7.50mm Width)

Supplier Device Package 18-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c622-20i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16c622-20i-so-4423029
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC16C62X
NOTES:
DS30235J-page 4  2003 Microchip Technology Inc.

PIC16C62X

)(4)
TABLE 1-1: PIC16C62X FAMILY OF DEVICES

PIC16C620(3) PIC16C620A(1)(4) PIC16CR620A(2) PIC16C621(3) PIC16C621A(1)(4) PIC16C622(3) PIC16C622A(1

Clock Maximum Frequency
of Operation (MHz)

20 40 20 20 40 20 40

Memory EPROM Program
Memory
(x14 words)

512 512 512 1K 1K 2K 2K

Data Memory (bytes) 80 96 96 80 96 128 128

Peripherals Timer Module(s) TMR0 TMR0 TMRO TMR0 TMR0 TMR0 TMR0

Comparators(s) 2 2 2 2 2 2 2

Internal Reference
Voltage

Yes Yes Yes Yes Yes Yes Yes

Features Interrupt Sources 4 4 4 4 4 4 4

I/O Pins 13 13 13 13 13 13 13

Voltage Range (Volts) 2.5-6.0 2.7-5.5 2.5-5.5 2.5-6.0 2.7-5.5 2.5-6.0 2.7-5.5

Brown-out Reset Yes Yes Yes Yes Yes Yes Yes

Packages 18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

18-pin DIP,
SOIC;
20-pin SSOP

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high

I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.
DS30235J-page 6  2003 Microchip Technology Inc.

PIC16C62X
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C62X family can be

attributed to a number of architectural features

commonly found in RISC microprocessors. To begin

with, the PIC16C62X uses a Harvard architecture, in

which, program and data are accessed from separate

memories using separate busses. This improves

bandwidth over traditional von Neumann architecture,

where program and data are fetched from the same

memory. Separating program and data memory further

allows instructions to be sized differently than 8-bit

wide data word. Instruction opcodes are 14-bits wide

making it possible to have all single word instructions.

A 14-bit wide program memory access bus fetches a

14-bit instruction in a single cycle. A two-stage pipeline

overlaps fetch and execution of instructions.

Consequently, all instructions (35) execute in a single

cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C620(A) and PIC16CR620A address

512 x 14 on-chip program memory. The PIC16C621(A)

addresses 1K x 14 program memory. The

PIC16C622(A) addresses 2K x 14 program memory.

All program memory is internal.

The PIC16C62X can directly or indirectly address its

register files or data memory. All special function

registers including the program counter are mapped in

the data memory. The PIC16C62X has an orthogonal

(symmetrical) instruction set that makes it possible to

carry out any operation on any register using any

Addressing mode. This symmetrical nature and lack of

‘special optimal situations’ make programming with the

PIC16C62X simple yet efficient. In addition, the

learning curve is reduced significantly.

The PIC16C62X devices contain an 8-bit ALU and

working register. The ALU is a general purpose

arithmetic unit. It performs arithmetic and Boolean

functions between data in the working register and any

register file.

The ALU is 8-bits wide and capable of addition,

subtraction, shift and logical operations. Unless

otherwise mentioned, arithmetic operations are two's

complement in nature. In two-operand instructions,

typically one operand is the working register

(W register). The other operand is a file register or an

immediate constant. In single operand instructions, the

operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU

operations. It is not an addressable register.

Depending on the instruction executed, the ALU may

affect the values of the Carry (C), Digit Carry (DC), and

Zero (Z) bits in the STATUS register. The C and DC bits

operate as a Borrow and Digit Borrow out bit,

respectively, bit in subtraction. See the SUBLW and
SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with

a description of the device pins in Table 3-1.
 2003 Microchip Technology Inc. DS30235J-page 9

PIC16C62X
3.1 Clocking Scheme/Instruction

Cycle

The clock input (OSC1/CLKIN pin) is internally divided

by four to generate four non-overlapping quadrature

clocks namely Q1, Q2, Q3 and Q4. Internally, the

program counter (PC) is incremented every Q1, the

instruction is fetched from the program memory and

latched into the instruction register in Q4. The

instruction is decoded and executed during the

following Q1 through Q4. The clocks and instruction

execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1,

Q2, Q3 and Q4). The instruction fetch and execute are

pipelined such that fetch takes one instruction cycle

while decode and execute takes another instruction

cycle. However, due to the pipelining, each instruction

effectively executes in one cycle. If an instruction

causes the program counter to change (e.g., GOTO)
then two cycles are required to complete the instruction

(Example 3-1).

A fetch cycle begins with the program counter (PC)

incrementing in Q1.

In the execution cycle, the fetched instruction is latched

into the “Instruction Register (IR)” in cycle Q1. This

instruction is then decoded and executed during the

Q2, Q3 and Q4 cycles. Data memory is read during Q2

(operand read) and written during Q4 (destination

write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKOUT
(RC mode)

PC PC+1 PC+2

Fetch INST (PC)
Execute INST (PC-1) Fetch INST (PC+1)

Execute INST (PC) Fetch INST (PC+2)
Execute INST (PC+1)

Internal
phase
clock

Note: All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction

is “flushed” from the pipeline, while the new instruction is being fetched and then executed.

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF PORTB Fetch 2 Execute 2

3. CALL SUB_1 Fetch 3 Execute 3

4. BSF PORTA, BIT3 Fetch 4 Flush

Fetch SUB_1 Execute SUB_1
DS30235J-page 12  2003 Microchip Technology Inc.

PIC16C62X
4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6

and Figure 4-7) is partitioned into two banks, which

contain the General Purpose Registers and the Special

Function Registers. Bank 0 is selected when the RP0

bit is cleared. Bank 1 is selected when the RP0 bit

(STATUS <5>) is set. The Special Function Registers

are located in the first 32 locations of each bank.

Register locations 20-7Fh (Bank0) on the

PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and

A0-BFh (Bank1) on the PIC16C622 and PIC16C622A

are General Purpose Registers implemented as static

RAM. Some Special Purpose Registers are mapped in

Bank 1.

Addresses F0h-FFh of bank1 are implemented as

common ram and mapped back to addresses 70h-7Fh

in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER

FILE

The register file is organized as 80 x 8 in the

PIC16C620/621, 96 x 8 in the PIC16C620A/621A/

CR620A and 128 x 8 in the PIC16C622(A). Each is

accessed either directly or indirectly through the File

Select Register FSR (Section 4.4).
DS30235J-page 14  2003 Microchip Technology Inc.

PIC16C62X
4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte

comes from the PCL register, which is a readable and

writable register. The high byte (PC<12:8>) is not

directly readable or writable and comes from PCLATH.

On any RESET, the PC is cleared. Figure 4-8 shows

the two situations for the loading of the PC. The upper

example in the figure shows how the PC is loaded on a

write to PCL (PCLATH<4:0> → PCH). The lower

example in the figure shows how the PC is loaded

during a CALL or GOTO instruction (PCLATH<4:3> →
PCH).

FIGURE 4-8: LOADING OF PC IN

DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an

offset to the program counter (ADDWF PCL). When

doing a table read using a computed GOTO method,

care should be exercised if the table location crosses a

PCL memory boundary (each 256 byte block). Refer to

the application note, “Implementing a Table Read"

(AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit

wide hardware stack (Figure 4-2 and Figure 4-3). The

stack space is not part of either program or data space

and the stack pointer is not readable or writable. The

PC is PUSHed onto the stack when a CALL instruction
is executed or an interrupt causes a branch. The stack

is POPed in the event of a RETURN, RETLW or a
RETFIE instruction execution. PCLATH is not affected
by a PUSH or POP operation.

The stack operates as a circular buffer. This means that

after the stack has been PUSHed eight times, the ninth

push overwrites the value that was stored from the first

push. The tenth push overwrites the second push (and

so on).

PC

12 8 7 0

5
PCLATH<4:0>

PCLATH

Instruction with

ALU result

GOTO,CALL

Opcode <10:0>

8

PC

12 11 10 0

11PCLATH<4:3>

PCH PCL

8 7

2

PCLATH

PCH PCL

PCL as
Destination

Note 1: There are no STATUS bits to indicate

stack overflow or stack underflow

conditions.

2: There are no instructions/mnemonics

called PUSH or POP. These are actions
that occur from the execution of the

CALL, RETURN, RETLW and RETFIE
instructions, or the vectoring to an

interrupt address.
 2003 Microchip Technology Inc. DS30235J-page 23

PIC16C62X
FIGURE 5-3: BLOCK DIAGRAM OF RA3 PIN

FIGURE 5-4: BLOCK DIAGRAM OF RA4 PIN

Data
Bus

QD

QCK P

N

WR
PORTA

WR
TRISA

Data Latch

TRIS Latch

RD TRISA

RD PORTA

Analog

VSS

VDD

RA3 Pin
QD

QCK

DQ

EN

To Comparator

Schmitt Trigger
Input Buffer

Input Mode

Comparator Output

Comparator Mode = 110

VDD

VSS

Data
Bus

QD

QCK

N

WR
PORTA

WR
TRISA

Data Latch

TRIS Latch

RD TRISA

RD PORTA

VSS

RA4 Pin

QD

QCK

DQ

EN

TMR0 Clock Input

Schmitt Trigger
Input Buffer

Comparator Output

Comparator Mode = 110

VSS
DS30235J-page 26  2003 Microchip Technology Inc.

PIC16C62X
5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The

corresponding data direction register is TRISB. A '1' in

the TRISB register puts the corresponding output driver

in a High Impedance mode. A '0' in the TRISB register

puts the contents of the output latch on the selected

pin(s).

Reading PORTB register reads the status of the pins,

whereas writing to it will write to the port latch. All write

operations are read-modify-write operations. So a write

to a port implies that the port pins are first read, then

this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up

(≈200 µA typical). A single control bit can turn on all the
pull-ups. This is done by clearing the RBPU

(OPTION<7>) bit. The weak pull-up is automatically

turned off when the port pin is configured as an output.

The pull-ups are disabled on Power-on Reset.

Four of PORTB’s pins, RB<7:4>, have an interrupt on

change feature. Only pins configured as inputs can

cause this interrupt to occur (e.g., any RB<7:4> pin

configured as an output is excluded from the interrupt

on change comparison). The input pins (of RB<7:4>)

are compared with the old value latched on the last

read of PORTB. The “mismatch” outputs of RB<7:4>

are OR’ed together to generate the RBIF interrupt (flag

latched in INTCON<0>).

FIGURE 5-5: BLOCK DIAGRAM OF

RB<7:4> PINS

This interrupt can wake the device from SLEEP. The

user, in the interrupt service routine, can clear the

interrupt in the following manner:

a) Any read or write of PORTB. This will end the

mismatch condition.

b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF.

Reading PORTB will end the mismatch condition and

allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with

software configurable pull-ups on these four pins allow

easy interface to a key pad and make it possible for

wake-up on key-depression. (See AN552, “Implement-

ing Wake-Up on Key Strokes.)

The interrupt-on-change feature is recommended for

wake-up on key depression operation and operations

where PORTB is only used for the interrupt on change

feature. Polling of PORTB is not recommended while

using the interrupt-on-change feature.

FIGURE 5-6: BLOCK DIAGRAM OF

RB<3:0> PINS

Data Latch

From other

RBPU(1)

P

VDD

I/O

QD

CK

QD

CK

Q D

EN

Q D

EN

Data Bus

WR PORTB

WR TRISB

Set RBIF

TRIS Latch

RD TRISB

RD PORTB

RB<7:4> pins

weak
pull-up

RD PORTB

Latch

TTL
Input
Buffer

pin

Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'

(OPTION<7>).

ST
Buffer

RB<7:6> in Serial Programming mode

Q

Q

VCC

VSS

Note: If a change on the I/O pin should occur

when the read operation is being executed

(start of the Q2 cycle), then the RBIF inter-

rupt flag may not get set.

Data Latch

RBPU(1)

P

VDD

QD

CK

D

CK

Q D

EN

Data Bus

WR PORTB

WR TRISB

RD TRISB

RD PORTB

weak
pull-up

RD PORTB

RB0/INT

I/O
pin

TTL
Input
Buffer

Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'

(OPTION<7>).

ST
Buffer

Q

Q

Q

VCC

VSS
DS30235J-page 28  2003 Microchip Technology Inc.

PIC16C62X
7.4 Comparator Response Time

Response time is the minimum time, after selecting a

new reference voltage or input source, before the

comparator output has a valid level. If the internal

reference is changed, the maximum delay of the

internal voltage reference must be considered when

using the comparator outputs. Otherwise the maximum

delay of the comparators should be used (Table 12-2).

7.5 Comparator Outputs

The comparator outputs are read through the CMCON

register. These bits are read only. The comparator

outputs may also be directly output to the RA3 and RA4

I/O pins. When the CM<2:0> = 110, multiplexors in the

output path of the RA3 and RA4 pins will switch and the

output of each pin will be the unsynchronized output of

the comparator. The uncertainty of each of the

comparators is related to the input offset voltage and the

response time given in the specifications. Figure 7-3

shows the comparator output block diagram.

The TRISA bits will still function as an output enable/

disable for the RA3 and RA4 pins while in this mode.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

Note 1: When reading the PORT register, all pins

configured as analog inputs will read as a

‘0’. Pins configured as digital inputs will

convert an analog input according to the

Schmitt Trigger input specification.

2: Analog levels on any pin that is defined as

a digital input may cause the input buffer

to consume more current than is

specified.

DQ

EN

To RA3 or
RA4 Pin

Bus
Data

RD CMCON

Set

MULTIPLEX

CMIF
Bit

-+

DQ

EN

CL

PORT PINS

RD CMCON

NRESET

FROM

OTHER

COMPARATOR
DS30235J-page 40  2003 Microchip Technology Inc.

PIC16C62X
7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is

a change in the output value of either comparator.

Software will need to maintain information about the

status of the output bits, as read from CMCON<7:6>, to

determine the actual change that has occurred. The

CMIF bit, PIR1<6>, is the comparator interrupt flag.

The CMIF bit must be RESET by clearing ‘0’. Since it is

also possible to write a '1' to this register, a simulated

interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit

(INTCON<6>) must be set to enable the interrupt. In

addition, the GIE bit must also be set. If any of these

bits are clear, the interrupt is not enabled, though the

CMIF bit will still be set if an interrupt condition occurs.

The user, in the interrupt service routine, can clear the

interrupt in the following manner:

a) Any read or write of CMCON. This will end the

mismatch condition.

b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF.

Reading CMCON will end the mismatch condition and

allow flag bit CMIF to be cleared.

7.7 Comparator Operation During

SLEEP

When a comparator is active and the device is placed

in SLEEP mode, the comparator remains active and

the interrupt is functional if enabled. This interrupt will

wake up the device from SLEEP mode when enabled.

While the comparator is powered-up, higher SLEEP

currents than shown in the power-down current

specification will occur. Each comparator that is

operational will consume additional current as shown in

the comparator specifications. To minimize power

consumption while in SLEEP mode, turn off the

comparators, CM<2:0> = 111, before entering SLEEP.

If the device wakes up from SLEEP, the contents of the

CMCON register are not affected.

7.8 Effects of a RESET

A device RESET forces the CMCON register to its

RESET state. This forces the comparator module to be

in the comparator RESET mode, CM<2:0> = 000. This

ensures that all potential inputs are analog inputs.

Device current is minimized when analog inputs are

present at RESET time. The comparators will be

powered-down during the RESET interval.

7.9 Analog Input Connection

Considerations

A simplified circuit for an analog input is shown in

Figure 7-4. Since the analog pins are connected to a

digital output, they have reverse biased diodes to VDD

and VSS. The analog input therefore, must be between

VSS and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the

diodes is forward biased and a latchup may occur. A

maximum source impedance of 10 kΩ is

recommended for the analog sources. Any external

component connected to an analog input pin, such as

a capacitor or a Zener diode, should have very little

leakage current.

FIGURE 7-4: ANALOG INPUT MODEL

Note: If a change in the CMCON register

(C1OUT or C2OUT) should occur when a

read operation is being executed (start of

the Q2 cycle), then the CMIF (PIR1<6>)

interrupt flag may not get set.

VA

RS < 10K

AIN

CPIN

5 pF

VDD

VT = 0.6V

VT = 0.6V

RIC

ILEAKAGE
±500 nA

VSS

Legend CPIN = Input Capacitance

VT = Threshold Voltage

ILEAKAGE = Leakage Current at the pin due to various junctions

RIC = Interconnect Resistance

RS = Source Impedance

VA = Analog Voltage
 2003 Microchip Technology Inc. DS30235J-page 41

PIC16C62X
FIGURE 9-11: EXTERNAL POWER-ON

RESET CIRCUIT (FOR

SLOW VDD POWER-UP)

FIGURE 9-12: EXTERNAL BROWN-OUT

PROTECTION CIRCUIT 1

FIGURE 9-13: EXTERNAL BROWN-OUT

PROTECTION CIRCUIT 2

FIGURE 9-14: EXTERNAL BROWN-OUT

PROTECTION CIRCUIT 3

Note 1: External Power-on Reset circuit is

required only if VDD power-up slope is

too slow. The diode D helps discharge

the capacitor quickly when VDD powers

down.

2: < 40 kΩ is recommended to make sure
that voltage drop across R does not

violate the device’s electrical specifica-

tion.

3: R1 = 100Ω to 1 kΩ will limit any current
flowing into MCLR from external capaci-

tor C in the event of MCLR/VPP pin

breakdown due to Electrostatic

Discharge (ESD) or Electrical Over-

stress (EOS).

C

R1

R D

VDD

MCLR

PIC16C62X

VDD

Note 1: This circuit will activate RESET when

VDD goes below (Vz + 0.7V) where

Vz = Zener voltage.

2: Internal Brown-out Reset circuitry should

be disabled when using this circuit.

VDD

33k

10k

40k

VDD

MCLR

PIC16C62X

Note 1: This brown-out circuit is less expen-

sive, albeit less accurate. Transistor

Q1 turns off when VDD is below a

certain level such that:

2: Internal Brown-out Reset should be

disabled when using this circuit.

3: Resistors should be adjusted for the

characteristics of the transistor.

VDD x
R1

R1 + R2
= 0.7V

VDD

R2 40k

VDD

MCLR

PIC16C62X

R1

Q1

This brown-out protection circuit employs

Microchip Technology’s MCP809 microcontroller

supervisor. The MCP8XX and MCP1XX families

of supervisors provide push-pull and open

collector outputs with both high and low active

RESET pins. There are 7 different trip point

selections to accommodate 5V and 3V systems.

MCLR

PIC16C62X

VDD

Vss

RST

MCP809

VDD

bypass
capacitor

VDD
DS30235J-page 54  2003 Microchip Technology Inc.

PIC16C62X
9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

• External interrupt RB0/INT

• TMR0 overflow interrupt

• PORTB change interrupts (pins RB<7:4>)

• Comparator interrupt

The interrupt control register (INTCON) records

individual interrupt requests in flag bits. It also has

individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>)

enables (if set) all un-masked interrupts or disables (if

cleared) all interrupts. Individual interrupts can be

disabled through their corresponding enable bits in

INTCON register. GIE is cleared on RESET.

The “return from interrupt” instruction, RETFIE, exits
interrupt routine, as well as sets the GIE bit, which re-

enable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and

the TMR0 overflow interrupt flags are contained in the

INTCON register.

The peripheral interrupt flag is contained in the special

register PIR1. The corresponding interrupt enable bit is

contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared

to disable any further interrupt, the return address is

pushed into the stack and the PC is loaded with 0004h.

Once in the interrupt service routine, the source(s) of

the interrupt can be determined by polling the interrupt

flag bits. The interrupt flag bit(s) must be cleared in

software before re-enabling interrupts to avoid RB0/

INT recursive interrupts.

For external interrupt events, such as the INT pin or

PORTB change interrupt, the interrupt latency will be

three or four instruction cycles. The exact latency

depends when the interrupt event occurs (Figure 9-16).

The latency is the same for one or two cycle

instructions. Once in the interrupt service routine, the

source(s) of the interrupt can be determined by polling

the interrupt flag bits. The interrupt flag bit(s) must be

cleared in software before re-enabling interrupts to

avoid multiple interrupt requests.

FIGURE 9-15: INTERRUPT LOGIC

Note 1: Individual interrupt flag bits are set

regardless of the status of their

corresponding mask bit or the GIE bit.

2: When an instruction that clears the GIE

bit is executed, any interrupts that were

pending for execution in the next cycle

are ignored. The CPU will execute a NOP
in the cycle immediately following the

instruction which clears the GIE bit. The

interrupts which were ignored are still

pending to be serviced when the GIE bit

is set again.

RBIF

RBIE

T0IF

T0IE

INTF

INTE

GIE

PEIE

Wake-up

(If in SLEEP mode)

Interrupt

to CPU

CMIE

CMIF
 2003 Microchip Technology Inc. DS30235J-page 55

PIC16C62X
TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved

on the stack. Typically, users may wish to save key

registers during an interrupt (e.g., W register and

STATUS register). This will have to be implemented in

software.

Example 9-3 stores and restores the STATUS and W

registers. The user register, W_TEMP, must be defined

in both banks and must be defined at the same offset

from the bank base address (i.e., W_TEMP is defined

at 0x20 in Bank 0 and it must also be defined at 0xA0

in Bank 1). The user register, STATUS_TEMP, must be

defined in Bank 0. The Example 9-3:

• Stores the W register

• Stores the STATUS register in Bank 0

• Executes the ISR code

• Restores the STATUS (and bank select bit

register)

• Restores the W register

EXAMPLE 9-3: SAVING THE STATUS

AND W REGISTERS IN

RAM

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on POR

Reset

Value on all
other

RESETS(1)

0Bh INTCON GIE PEIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u

0Ch PIR1 — CMIF — — — — — — -0-- ---- -0-- ----

8Ch PIE1 — CMIE — — — — — — -0-- ---- -0-- ----

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal

operation.

MOVWF W_TEMP ;copy W to temp register,

;could be in either bank

SWAPF STATUS,W ;swap status to be saved

into W

BCF STATUS,RP0 ;change to bank 0 regardless

;of current bank

MOVWF STATUS_TEMP ;save status to bank 0

;register

:

: (ISR)

:

SWAPF STATUS_TEMP,

W

;swap STATUS_TEMP register

;into W, sets bank to origi-

nal

;state

MOVWF STATUS ;move W into STATUS register

SWAPF W_TEMP,F ;swap W_TEMP

SWAPF W_TEMP,W ;swap W_TEMP into W
 2003 Microchip Technology Inc. DS30235J-page 57

PIC16C62X
BCF Bit Clear f

Syntax: [label] BCF f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: 0 → (f)

Status Affected: None

Encoding: 01 00bb bfff ffff

Description: Bit 'b' in register 'f' is cleared.

Words: 1

Cycles: 1

Example BCF FLAG_REG, 7

Before Instruction
FLAG_REG = 0xC7

After Instruction

FLAG_REG = 0x47

BSF Bit Set f

Syntax: [label] BSF f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: 1 → (f)

Status Affected: None

Encoding: 01 01bb bfff ffff

Description: Bit 'b' in register 'f' is set.

Words: 1

Cycles: 1

Example BSF FLAG_REG, 7

Before Instruction
FLAG_REG = 0x0A

After Instruction

FLAG_REG = 0x8A

BTFSC Bit Test, Skip if Clear

Syntax: [label] BTFSC f,b

Operands: 0 ≤ f ≤ 127
0 ≤ b ≤ 7

Operation: skip if (f) = 0

Status Affected: None

Encoding: 01 10bb bfff ffff

Description: If bit 'b' in register 'f' is '0', then the

next instruction is skipped.

If bit 'b' is '0', then the next instruc-

tion fetched during the current

instruction execution is discarded,

and a NOP is executed instead,
making this a two-cycle instruction.

Words: 1

Cycles: 1(2)

Example HERE

FALSE

TRUE

BTFSC

GOTO

•

•

•

FLAG,1

PROCESS_CO

DE

Before Instruction
PC = address HERE

After Instruction
if FLAG<1> = 0,

PC = address TRUE
if FLAG<1>=1,

PC = address FALSE
DS30235J-page 64  2003 Microchip Technology Inc.

PIC16C62X
CLRW Clear W

Syntax: [label] CLRW

Operands: None

Operation: 00h → (W)

1 → Z

Status Affected: Z

Encoding: 00 0001 0000 0011

Description: W register is cleared. Zero bit (Z)

is set.

Words: 1

Cycles: 1

Example CLRW

Before Instruction
W = 0x5A

After Instruction
W = 0x00

Z = 1

CLRWDT Clear Watchdog Timer

Syntax: [label] CLRWDT

Operands: None

Operation: 00h → WDT

0 → WDT prescaler,

1 → TO

1 → PD

Status Affected: TO, PD

Encoding: 00 0000 0110 0100

Description: CLRWDT instruction resets the
Watchdog Timer. It also resets the

prescaler of the WDT. STATUS

bits TO and PD are set.

Words: 1

Cycles: 1

Example CLRWDT

Before Instruction
WDT counter = ?

After Instruction
WDT counter = 0x00

WDT prescaler= 0

TO = 1

PD = 1

COMF Complement f

Syntax: [label] COMF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) → (dest)

Status Affected: Z

Encoding: 00 1001 dfff ffff

Description: The contents of register 'f' are

complemented. If 'd' is 0, the

result is stored in W. If 'd' is 1, the

result is stored back in register 'f'.

Words: 1

Cycles: 1

Example COMF REG1,0

Before Instruction
REG1 = 0x13

After Instruction
REG1 = 0x13

W = 0xEC

DECF Decrement f

Syntax: [label] DECF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) - 1 → (dest)

Status Affected: Z

Encoding: 00 0011 dfff ffff

Description: Decrement register 'f'. If 'd' is 0,

the result is stored in the W

register. If 'd' is 1, the result is

stored back in register 'f'.

Words: 1

Cycles: 1

Example DECF CNT, 1

Before Instruction
CNT = 0x01

Z = 0

After Instruction
CNT = 0x00

Z = 1
DS30235J-page 66  2003 Microchip Technology Inc.

PIC16C62X
MOVF Move f

Syntax: [label] MOVF f,d

Operands: 0 ≤ f ≤ 127
d ∈ [0,1]

Operation: (f) → (dest)

Status Affected: Z

Encoding: 00 1000 dfff ffff

Description: The contents of register f is

moved to a destination dependent

upon the status of d. If d = 0,

destination is W register. If d = 1,

the destination is file register f

itself. d = 1 is useful to test a file

register since status flag Z is

affected.

Words: 1

Cycles: 1

Example MOVF FSR, 0

After Instruction
W = value in FSR

register

Z = 1

MOVWF Move W to f

Syntax: [label] MOVWF f

Operands: 0 ≤ f ≤ 127

Operation: (W) → (f)

Status Affected: None

Encoding: 00 0000 1fff ffff

Description: Move data from W register to reg-

ister 'f'.

Words: 1

Cycles: 1

Example MOVWF OPTION

Before Instruction
OPTION = 0xFF

W = 0x4F

After Instruction
OPTION = 0x4F

W = 0x4F

NOP No Operation

Syntax: [label] NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 00 0000 0xx0 0000

Description: No operation.

Words: 1

Cycles: 1

Example NOP

OPTION Load Option Register

Syntax: [label] OPTION

Operands: None

Operation: (W) → OPTION

Status Affected: None

Encoding: 00 0000 0110 0010

Description: The contents of the W register are

loaded in the OPTION register.

This instruction is supported for

code compatibility with PIC16C5X

products. Since OPTION is a read-

able/writable register, the user can

directly address it.

Words: 1

Cycles: 1

Example

To maintain upward compatibil-

ity with future PICmicro®

products, do not use this

instruction.
 2003 Microchip Technology Inc. DS30235J-page 69

PIC16C62X
11.3 MPLAB C17 and MPLAB C18

C Compilers

The MPLAB C17 and MPLAB C18 Code Development

Systems are complete ANSI C compilers for

Microchip’s PIC17CXXX and PIC18CXXX family of

microcontrollers. These compilers provide powerful

integration capabilities, superior code optimization and

ease of use not found with other compilers.

For easy source level debugging, the compilers provide

symbol information that is optimized to the MPLAB IDE

debugger.

11.4 MPLINK Object Linker/

MPLIB Object Librarian

The MPLINK object linker combines relocatable

objects created by the MPASM assembler and the

MPLAB C17 and MPLAB C18 C compilers. It can link

relocatable objects from pre-compiled libraries, using

directives from a linker script.

The MPLIB object librarian manages the creation and

modification of library files of pre-compiled code. When

a routine from a library is called from a source file, only

the modules that contain that routine will be linked in

with the application. This allows large libraries to be

used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many

smaller files

• Enhanced code maintainability by grouping

related modules together

• Flexible creation of libraries with easy module

listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI

compliant, optimizing compiler that translates standard

ANSI C programs into dsPIC30F assembly language

source. The compiler also supports many command-

line options and language extensions to take full

advantage of the dsPIC30F device hardware capabili-

ties, and afford fine control of the compiler code

generator.

MPLAB C30 is distributed with a complete ANSI C

standard library. All library functions have been

validated and conform to the ANSI C library standard.

The library includes functions for string manipulation,

dynamic memory allocation, data conversion, time-

keeping, and math functions (trigonometric, exponen-

tial and hyperbolic). The compiler provides symbolic

information for high level source debugging with the

MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker,

and Librarian

MPLAB ASM30 assembler produces relocatable

machine code from symbolic assembly language for

dsPIC30F devices. MPLAB C30 compiler uses the

assembler to produce it’s object file. The assembler

generates relocatable object files that can then be

archived or linked with other relocatable object files and

archives to create an executable file. Notable features

of the assembler include:

• Support for the entire dsPIC30F instruction set

• Support for fixed-point and floating-point data

• Command line interface

• Rich directive set

• Flexible macro language

• MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code devel-

opment in a PC hosted environment by simulating the

PICmicro series microcontrollers on an instruction

level. On any given instruction, the data areas can be

examined or modified and stimuli can be applied from

a file, or user defined key press, to any pin. The execu-

tion can be performed in Single-Step, Execute Until

Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic

debugging using the MPLAB C17 and MPLAB C18

C Compilers, as well as the MPASM assembler. The

software simulator offers the flexibility to develop and

debug code outside of the laboratory environment,

making it an excellent, economical software

development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code

development in a PC hosted environment by simulating

the dsPIC30F series microcontrollers on an instruction

level. On any given instruction, the data areas can be

examined or modified and stimuli can be applied from

a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic

debugging using the MPLAB C30 C Compiler and

MPLAB ASM30 assembler. The simulator runs in either

a Command Line mode for automated tasks, or from

MPLAB IDE. This high speed simulator is designed to

debug, analyze and optimize time intensive DSP

routines.
DS30235J-page 76  2003 Microchip Technology Inc.

PIC16C62X
12.8 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

FIGURE 12-11: LOAD CONDITIONS

1. TppS2ppS

2. TppS

T

F Frequency T Time

Lowercase subscripts (pp) and their meanings:

pp

ck CLKOUT osc OSC1

io I/O port t0 T0CKI

mc MCLR

Uppercase letters and their meanings:

S

F Fall P Period

H High R Rise

I Invalid (Hi-impedance) V Valid

L Low Z Hi-Impedance

VDD/2

CL

RL

Pin Pin

VSS VSS

CL

RL = 464Ω

CL = 50 pF for all pins except OSC2

15 pF for OSC2 output

Load condition 1 Load condition 2
 2003 Microchip Technology Inc. DS30235J-page 103

PIC16C62X
14.1 Package Marking Information

20-Lead SSOP

XXXXXXXXXX

AABBCDE

XXXXXXXXXX

XXXXXXXX

XXXXXXXX

AABBCDE

18-Lead CERDIP Windowed

18-Lead SOIC (.300")

XXXXXXXXXXXX

AABBCDE

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

AABBCDE

18-Lead PDIP

Example

-04I / 218

9951CBP

PIC16C622A

16C622

/JW

9901CBA

Example

Example

-04I / S0218

9918CDK

PIC16C622

PIC16C622A

-04I / P456

9923CBA

Example

Legend: XX...X Customer specific information*

Y Year code (last digit of calendar year)

YY Year code (last 2 digits of calendar year)

WW Week code (week of January 1 is week ‘01’)

NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will

be carried over to the next line thus limiting the number of available characters

for customer specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and

traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check

with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP

price.
 2003 Microchip Technology Inc. DS30235J-page 117

PIC16C62X
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-

uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation

can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager

RE: Reader Response

Total Pages Sent ________

From: Name

Company

Address

City / State / ZIP / Country

Telephone: (_______) _________ - _________

Application (optional):

Would you like a reply? Y N

Device: Literature Number:

Questions:

FAX: (______) _________ - _________

DS30235JPIC16C62X

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
DS30235J-page 124  2003 Microchip Technology Inc.

