

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622a-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	. 5			
2.0	PIC16C62X Device Varieties	. 7			
3.0	Architectural Overview	. 9			
4.0	Memory Organization	13			
5.0	I/O Ports	25			
6.0	Timer0 Module	31			
7.0	Comparator Module	37			
8.0	Voltage Reference Module	43			
9.0	Special Features of the CPU	45			
10.0	Instruction Set Summary	61			
11.0	Development Support	75			
12.0	Electrical Specifications	81			
13.0	Device Characterization Information	09			
14.0	Packaging Information 1	13			
Append	Jix A: Enhancements 1	19			
Append	dix B: Compatibility 1	19			
Index		21			
On-Line	e Support 1	23			
System	systems Information and Upgrade Hot Line 123				
Reader	r Response 1	24			
Produc	t Identification System 1	25			

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

FIGURE 4-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all			
	inputs. The digital inputs are disabled and			
	the comparator inputs are forced to ground			
	to reduce excess current consumption.			

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

NOTES:

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10µs delay
MOVF	CMCON,F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable

7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	VREN	VROE	Vrr	_	VR3	VR2	VR1	Vr0
	bit 7							bit 0
bit 7	VREN: VREI 1 = VREF C	F Enable ircuit power	ed on					
	0 = VREF C	ircuit powere	ed down, no	IDD drain				
bit 6	VROE: VRE	F Output En	able					
	1 = VREF IS 0 = VREF IS	s output on F s disconnect	cA2 pin ed from RA2	2 pin				
bit 5	VRR: VREF	Range sele	ction	•				
	1 = Low Ra	ange						
hit 1		ange	d aa '0'					
DIC 4	Unimplem	ented: Rea	das U					
bit 3-0	VR<3:0>: \	/REF value s	election $0 \leq$	VR [3:0] ≤ 1	5			
	when VRR	= 1: VREF =	(VR<3:0>/ 2	4) * VDD	0) +) /			
	when VRR	= 0: VREF =	1/4 ^ VDD +	(VR<3:0>/ 3	2) ^ VDD			
	Legend:							
	R = Reada	ıble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown
8-1:	VOLTAGE			K DIAGR	۸M			
			16 \$	Stages				
\sim	T			∕		_		
\rightarrow	-여드 _{8R}	R	R	R	R			
				۸ ۸ ۸	A A A			

REGISTER 8-1: VRCON REGISTER(ADDRESS 9Fh)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16C62X devices can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 9-1 and Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

R	~[]				
Mode	Freq	OSC1(C1)	OSC2(C2)		
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	82 - 100 pF 15 - 68 pF 15 - 68 pF		
HS	8.0 MHz 16.0 MHz 🔨	10-68 bF 10-22 pF	10 - 68 pF 10 - 22 pF		
Higher capacitance increases the stability of the oscil- lator but also increases the start-up time. These wabes are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.					

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)	
LP	32 kHz	68 - 100 pF	68 - 100 pF	
	200 kHz	15 - 30 pF	15 - 30 pF	
хт	100 kHz	68 - 150 pF	150 - 300 pF	
	2 MHz	15 - 30 pF	15 - 30 pF	
	4 MHz	15 - 30 pF	15 - 30 pF	
HS	8 MHz	15-30 pF	^V 15 - 30 pF	
	10 MHz	15-30 pF	15 - 30 pF	
	20 MHz 🔨	15-30 pF	15 - 30 pF	
Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.				

9.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with <u>PWRTE</u> bit erased (<u>PWRT</u> disabled), there will be no time-out at all. Figure 9-8, Figure 9-9 and Figure 9-10 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC16C62X device operating in parallel.

Table 9-4 shows the RESET conditions for some special registers, while Table 9-5 shows the RESET conditions for all the registers.

9.4.6 POWER CONTROL (PCON)/ STATUS REGISTER

The power control/STATUS register, PCON (address 8Eh), has two bits.

Bit0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET, if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Reset	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	Brown out Rooot		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

TABLE 9-1: TIME-OUT IN VARIOUS SITUATIONS

	TABLE 9-2 :	STATUS/PCON BITS AND THEIR SIGNIFICANCE
--	--------------------	---

POR	BOR	то	PD	
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
83h	STATUS				TO	PD				0001 1xxx	000q quuu
8Eh	PCON	_	_				_	POR	BOR	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status Affected:	C, DC, Z	Operation: Status	(f) - (W) \rightarrow (dest) C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	000010dfffffffSubtract (2's complement method)W register from register 'f'. If 'd' is 0,the result is stored in the W register.If 'd' is 1, the result is stored head in
Words:	1		register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 $C = ?$		Before Instruction
	After Instruction		REG1= 3
	W = 1		W = 2 C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2 $C = ?$		REG1= 1 W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0 C = 1; result is zero		REG1= 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction REG1= 0
	After Instruction		W = 2
	W = 0xFF	Example 3	C = 1; result is zero Before Instruction
	C – 0, result is negative		REG1= 1 W = 2 C = ?
			After Instruction
			REG1= 0xFF W = 2 C = 0; result is negative

SWAPF	PF Swap Nibbles in f									
Syntax:	[label]	SWAPF	f,d							
Operands:	$0 \le f \le 127$ d $\in [0,1]$									
Operation:	(f<3:0>) - (f<7:4>) -	→ (dest< \rightarrow (dest<	7:4>), 3:0>)							
Status Affected:	None									
Encoding:	00	1110	dfff	Ē	ffff					
Description:	register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.									
Words:	1									
Cycles:	1									
Example	SWAPF	REG,	0							
	Before In	struction								
	REG1 = 0xA5									
	After Instruction									
		REG1 W	= =	0xA5 0x5A						

TRIS	Load TRIS Register								
Syntax:	[<i>label</i>] TRIS f								
Operands:	$5 \le f \le 7$								
Operation:	(W) \rightarrow TRIS register f;								
Status Affected:	None								
Encoding:	00 0000 0110 Offf								
Description.	registers are readable and writable, the user can directly address them.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.								

XORLW	Exclusive OR Literal with W									
Syntax:	[<i>label</i> XORLW k]									
Operands:	$0 \le k \le 255$									
Operation:	(W) .XOR. $k \rightarrow (W)$									
Status Affected:	Z									
Encoding:	11 1010 kkkk kkkk									
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.									
Words:	1									
Cycles:	1									
Example:	XORLW 0xAF									
	Before Instruction									
	W = 0xB5									
	After Instruction									
	W = 0x1A									
XORWF	Exclusive OR W with f									
Syntax:	[<i>label</i>] XORWF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(W) .XOR. (f) \rightarrow (dest)									
Status Affected:	Z									
Encoding:	00 0110 dfff ffff									
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.									
Words:	1									
Cycles:	1									
Example	XORWF REG 1									
	Before Instruction									
	REG = 0xAF W = 0xB5									
	After Instruction									
	REG = 0x1A W = 0xB5									

PIC16C62X

NOTES:

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62X				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and						
	OULA		Opera	ating vo	oltage V	-4 VDD ran	$0^{\circ}C \le TA \le +125^{\circ}C$ for extended ge is the PIC16C62X range.			
Param . No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM P	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	 	6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 3.0V$			
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	_	300	μA	VDD = 3.0V			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA				$\begin{array}{l lllllllllllllllllllllllllllllllllll$							
PIC16LC62XA			Stand Oper	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. Sym Characteristic No.				Тур†	Max	Units	Conditions				
D010	IDD	Supply Current ^(2, 4)	-	1.2 0.4	2.0 1.2	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode (Note 4)*				
				1.0 4.0	2.0 6.0	mA mA	Fosc = 10 MHz, VDD = 3.0V, WDT dis- abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis-				
			-	4.0 35	7.0 70	mA μA	abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis- abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis-				
D010	IDD	Supply Current ⁽²⁾	_	1.2	2.0 1.1	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4)				
			_	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT dis- abled, LP mode				
D020	IPD	Power-down Current ⁽³⁾	 		2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.				
D020	IPD	Power-down Current ⁽³⁾	 	 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Standard Operating Conditions (unless otherwise stated)							
PIC16C	R62XA-(04	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and							
PIC16C	R62XA-2	20	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and							
			-40°C \leq TA \leq +125°C for extended							
			Standard Operating Conditions (unless otherwise stated)							
			Operating temperature -40° C $<$ Ta $< +85^{\circ}$ C for industrial and							
PIC16L0	CR62XA	04	opora	ling ton	porat		0° C < TA < +70°C for commercial and			
						-40	1° C < TA < +125°C for extended			
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito				
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions			
NU.	1	(2)			050					
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V			
				0.400	1.0	μΑ				
				0.600	2.2	μΑ	VDD - 5.5V			
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.			
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V			
				200	950	nA A	$VDD = 3.0V^{*}$			
				0.600	2.2	μΑ	VDD = 5.5V			
D aga		(5)		5.0	9.0	μΑ				
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V			
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$			
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$			
D023		Comparator Current for each		30	60	μΑ	VDD = 4.0V			
00234		Vere Current ⁽⁵⁾		80	125					
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V			
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)			
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)			
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$			
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V			
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V			
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures			
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures			
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures			
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures			
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures			
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures			
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures			
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X/C6	2XA/CR62XA	$\begin{array}{l lllllllllllllllllllllllllllllllllll$								
PIC16L	C62X/L	C62XA/LCR62XA	Standa Operat	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Sym	Characteristic	Min	Min Typ† Max Units Conditions							
	Vol	Output Low Voltage									
D080		I/O ports	_	_	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C				
			_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C				
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C				
			_	_	0.6	V	IoL = 1.2 mA, VDD = 4.5V, +125°C				
	Vон	Output High Voltage ⁽³⁾									
D090		I/O ports (Except RA4)	VDD-0.7		_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С				
			VDD-0.7		_	V	Іон = -2.5 mA, Vdd = 4.5V, +125°C				
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	_	V	ІОН = -1.3 mA, VDD = 4.5V, -40° to +85°С				
			VDD-0.7	_	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°С				
	Vон	Output High Voltage ⁽³⁾									
D090		I/O ports (Except RA4)	VDD-0.7	_	—	V	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°C				
			VDD-0.7	_	_	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C				
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С				
			VDD-0.7		—	V	IOH = -1.0 mA, VDD = 4.5V, +125°С				
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA				
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA				
		Capacitive Loading Specs on Output Pins									
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.				
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF					
		Capacitive Loading Specs on Output Pins									
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.				
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

*

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins		Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic Sym M			Тур ⁽¹⁾	Max	Units	Conditions
Supply Voltage	Vdd	4.5	_	5.5	V	HS Option from 20 - 40 MHz
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected
Input Low Voltage OSC1	Vi∟	Vss	_	0.2VDD	V	HS mode, OSC1 externally driven
Input High Voltage OSC1	Vih	0.8Vdd	_	Vdd	V	HS mode, OSC1 externally driven

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, MCLR = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)

AC CHARACTERISTICS All Pins Except Power Supply Pir		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic Sym Min				Max	Units	Conditions
External CLKIN Frequency	Fosc	20	_	40	MHz	HS mode, OSC1 externally driven
External CLKIN Period	Tosc	25		50	ns	HS mode (40), OSC1 externally driven
Clock in (OSC1) Low or High Time	TosL, TosH	6			ns	HS mode, OSC1 externally driven
Clock in (OSC1) Rise or Fall Time	TosR, TosF	_	—	6.5	ns	HS mode, OSC1 externally driven
OSC1↑ (Q1 cycle) to Port out valid	TosH2IoV	_		100	ns	—
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	_	—	ns	

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

TABLE 12-1: COMPARATOR SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments
Input offset voltage			± 5.0	± 10	mV	
Input common mode voltage		0		Vdd - 1.5	V	
CMRR		+55*			δβ	
Response Time ⁽¹⁾			150*	400* 600*	ns ns	PIC16C62X(A) PIC16LC62X
Comparator mode change to output valid				10*	μS	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 12-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions:VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments	
Resolution			VDD/24 VDD/32		LSB LSB	Low Range (VRR=1) High Range (VRR=0)	
Absolute Accuracy				<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)	
Unit Resistor Value (R)			2K*		Ω	Figure 8-1	
Settling Time ⁽¹⁾				10*	μs		
* These parameters are characteriz Note 1: Settling time measured w	zed but not hile VRR =	tested. 1 and VR<3:	:0> transitio	ons from 0000) to 1111		

DS30235J-page 102

14.0 PACKAGING INFORMATION

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

	Units	INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins			18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

14.1 Package Marking Information

Legenc	I: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the even be carried for custom	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Phoenix

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Marketing Support Division Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 China - Fuzhou Microchip Technology Consulting (Shanghai)

Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen**

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao

Mm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office Marketing Support Division Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207

Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 United Kingdom Microchip Ltd 505 Eskdale Road

Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/25/03