

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622at-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	EPROM Program Memory (x14 words)	512	512	512	1K	1K	2K	2K
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART[®] and PRO MATE[®] programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Productionsm (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number. NOTES:

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0				
	bit 7							bit 0				
bit 7	C2OUT : Comparator 2 output 1 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ < C2 VIN-											
bit 6	C1OUT : Comparator 1 output 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN-											
bit 5-4	Unimplem	ented: Read	d as '0'									
bit 3	CIS: Comparator Input Switch When CM<2:0>: = 001: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA2 0 = C1 VIN- connects to RA2											
bit 2-0	CM<2:0>: (Comparator	mode.									
	Logondi											

L	.egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10µs delay
MOVF	CMCON,F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable

7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).

7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

TABLE 7-1 :	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
--------------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT			CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		CMIF		_	_			_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0
85h	TRISA		_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

-

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see

DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	—	—
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded cells are not used by the Watchdog Timer.

Note: – = Unimplemented location, read as "0"

+ = Reserved for future use

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0			
Status Affected:	None	Status Affected:	None			
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff			
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the			
Words:	1		next instruction is skipped.			
Cycles:	1		tion fetched during the current			
Example	BCF FLAG_REG, 7		instruction execution is discarded,			
	Before Instruction FLAG REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.			
	After Instruction	Words:	1			
	FLAG REG = 0x47	Cycles:	1(2)			
		Example	HERE BTFSC FLAG,1			
BSF	Bit Set f		TRUE • DE			
Syntax:	[<i>label</i>]BSF f,b		•			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE			
Operation:	$1 \rightarrow (f \le b >)$		After Instruction			
Status Affected:	None		PC = address TRUE			
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,			
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE			
Words:	1					
Cycles:	1					
Example	BSF FLAG_REG, 7					

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine			
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$			
Operation:	0 ≤ b < 7 skip if (f) = 1	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>			
Encoding:		Status Affected:	None			
Encouring.	If hit 'h' in register 'f' is '1', then the	Encoding:	10 Okkk kkkk kkkk			
Description.	next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is			
Words:	1		a two-cycle instruction.			
Cycles:	1(2)	vvords:	1			
Example	HERE BTFSS FLAG,1	Cycles:	2			
	TRUE • DE	Example	HERE CALL THER E			
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1,		PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			
		CLRF	Clear f			
		Syntax:	[<i>label</i>] CLRF f			
		Operands:	$0 \le f \le 127$			
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
		Status Affected:	Z			
		Encoding:	00 0001 1fff ffff			
		Description:	The contents of register 'f' are cleared and the Z bit is set.			
		Words:	1			
		Cycles:	1			
		Example	CLRF FLAG_REG			
			Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1			

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$			
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]			
Status Affected:	C, DC, Z	Operation: Status	(f) - (W) \rightarrow (dest) C, DC, Z			
Encoding:	11 110x kkkk kkkk	Affected:				
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	000010dfffffffSubtract (2's complement method)W register from register 'f'. If 'd' is 0,the result is stored in the W register.If 'd' is 1, the result is stored head in			
Words:	1		register 'f'.			
Cycles:	1	Words:	1			
Example 1:	SUBLW 0x02	Cycles:	1			
	Before Instruction	Example 1:	SUBWF REG1,1			
	W = 1 $C = ?$		Before Instruction			
	After Instruction		REG1= 3			
	W = 1		W = 2 C = ?			
Example 2:	Before Instruction		After Instruction			
Example 2.	W = 2 $C = ?$		REG1= 1 W = 2 C = 1; result is positive			
	After Instruction	Example 2:	Before Instruction			
	W = 0 C = 1; result is zero		REG1= 2 W = 2			
Example 3:	Before Instruction		C = ?			
	W = 3 C = ?		After Instruction REG1= 0			
	After Instruction		W = 2			
	W = 0xFF	Example 3	C = 1; result is zero Before Instruction			
	C – 0, result is negative		REG1= 1 W = 2 C = ?			
			After Instruction			
			REG1= 0xFF W = 2 C = 0; result is negative			

FIGURE 12-8: PIC16CR62XA VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq 0°C, +70°C \leq TA \leq +125°C

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

PIC16C	62XA	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$						
PIC16L	C62XA	Stand Opera	Standard Operating Conditions (unless otherwise st Departing temperature -40° C \leq Ta \leq +85°C for indust 0° C \leq Ta \leq +70°C for comme -40° C \leq Ta \leq +125°C for exte					
Param. No.	Sym	Characteristic	Min Typ† Max Units Condition				Conditions	
D022	ΔİWDT	WDT Current ⁽⁵⁾	—	6.0	10 12	μA μA	VDD = 4.0V (125°C)	
D022A	Δ IBOR	Brown-out Reset Current ⁽⁵⁾	—	75	125	μA	BOD enabled, VDD = 5.0V	
D023		Comparator Current for each Comparator ⁽⁵⁾	_	30	60	μA	VDD = 4.0V	
D023A	ΔIVREF	VREF Current ⁽³⁾	_	80	135	μA	VDD = 4.0V	
D022	ΔI WDT	WDT Current ⁽⁵⁾	—	6.0	10	μΑ	VDD=4.0V	
DOODA	41	Descent Descet Operation (5)		75	12	μA	$\frac{(125^{\circ}C)}{200} = 5.017$	
D022A		Brown-out Reset Current ^(e)		75	125	μΑ	BOD enabled, $VDD = 5.0V$	
D023	AICOMP	Comparator Current for each		30	60	μΑ	VDD - 4.0V	
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V	
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures	
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures	
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures	
		HS Oscillator Operating Frequency	0	—	20	MHZ	All temperatures	
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures	
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures	
		HS Oscillator Operating Frequency	0	_	4 20	MHZ MHZ	All temperatures All temperatures	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise	
D031		with Schmitt Trigger input	Vss		0.2VDD	V		
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)	
D033		OSC1 (in XT and HS)	Vss	—	0.3VDD	V		
		OSC1 (in LP)	Vss	—	0.6Vdd - 1.0	V		
	Vih	Input High Voltage						
		I/O ports						
D040		with TTL buffer	2.0V	—	VDD	V	VDD = 4.5V to 5.5V, otherwise	
D044		with Ochavitt Triansations t	0.25 VDD + 0.8		VDD			
D041					VDD			
D042		MCLR RA4/TUCKI		_	VDD	V		
D043 D043A		OSC1 (AT, HS and LP)		_	VDD	v	(Note 1)	
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μА	$V_{DD} = 5.0V$. VPIN = Vss	
	liL	Input Leakage Current ^(2, 3)						
		I/O ports (except PORTA)			±1.0	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance	
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \le VPIN \le VDD$	
D063		OSC1, MCLR	_	—	±5.0	μA	$Vss \leq VPIN \leq VDD,$ XT, HS and LP osc configuration	
	Vol	Output Low Voltage						
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C	
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C	
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C	
		(2)	_		0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C	
	Vон	Output High Voltage ⁽³⁾						
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C	
			VDD-0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, +125°C	
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C	
*0450	1/25	On an Duain Ulink Matterna	VDD-0.7	_		V	IOH = -1.0 mA, VDD = 4.5V, +125°C	
"D150	VOD	Open Drain High Voltage			8.5	V	RA4 pin	
		Capacitive Loading Specs on						
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1	
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

 mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
 For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

12.8 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

1.1.			
т			
F	Frequency	Т	Time
Lowerca	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	OSC	OSC1
io	I/O port	tO	TOCKI
mc	MCLR		
Upperca			
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 12-11: LOAD CONDITIONS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾		75 —	200 400	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
11*	TosH2ck H	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	75 —	200 400	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
12*	TckR	CLKOUT rise time ⁽¹⁾		35 —	100 200	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
13*	TckF	CLKOUT fall time ⁽¹⁾		35 —	100 200	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
14*	TckL2ioV	CLKOUT \downarrow to Port out valid ⁽¹⁾	_	—	20	ns	
15*	TioV2ckH	Port in valid before CLKOUT ↑ ⁽¹⁾	Tosc +200 ns Tosc +400 ns	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
16*	TckH2iol	Port in hold after CLKOUT $\uparrow^{(1)}$	0	—		ns	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	_	50	150 300	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	100 200	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	—	—	ns	
20*	TioR	Port output rise time	_	10 —	40 80	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
21*	TioF	Port output fall time	_	10 —	40 80	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
22*	Tinp	RB0/INT pin high or low time	25 40	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
23	Trbp	RB<7:4> change interrupt high or low time	Тсү	—	—	ns	

TABLE 12-4: CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

14.1 Package Marking Information

Legenc	I: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the even be carried for custom	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.