E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622at-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

REGISTER 4-2:	OPTION REGISTER (ADDRESS 81H)
---------------	-------------------------------

RBPU INTEDG TOCS TOSE bit 7 bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	PSA t latch va DCKI pin DCKI pin	PS2	PS1	PS0 bit 0
bit 7 bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	t latch va DCKI pin DCKI pin	alues		bit 0
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	t latch va DCKI pin DCKI pin	alues		
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 T0CS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	rt latch va DCKI pin DCKI pin	alues		
1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	t latch va DCKI pin DCKI pin	alues		
 bit 6 INTEDG: Interrupt Edge Select bit Interrupt on rising edge of RB0/INT pin Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit Transition on RA4/T0CKI pin Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit Internal instruction on RA4/T0CKI pin Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit Increment on high-to-low transition on RA4/T0 Increment on low-to-high transition on RA4/T0 bit 3)CKI pin)CKI pin	alues		
bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	DCKI pin DCKI pin			
1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 T0CS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
 bit 5 TOCS: TMR0 Clock Source Select bit Transition on RA4/T0CKI pin Transition on RA4/T0CKI pin Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit Increment on high-to-low transition on RA4/T0 Increment on low-to-high transition on RA4/T0 bit 3)CKI pin)CKI pin			
bit 5 TOCS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit)CKI pin)CKI pin			
bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit)CKI pin)CKI pin			
1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit	CKI pin CKI pin			
0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	OCKI pin			
bit 3 PSA : Prescaler Assignment bit				
1 = Prescaler is assigned to the WDT				
0 = Prescaler is assigned to the Timer0 module				
bit 2-0 PS<2:0> : Prescaler Rate Select bits				
Bit Value TMR0 Rate WDT Rate				
000 1:2 1:1				
001 1:4 1:2				
101 1:64 1:32				
110 1:128 1:64				
111 1:256 1:128				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x0F	; RA3-RA0 are
MOVWF	TRISA	; inputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank O
CALL	DELAY10	; 10µs delay

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	_	-	CIS	CM2	CM1	CM0	00 0000	00 0000
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Note: - = Unimplemented, read as "0"

9.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD (ADDRESS 2007h)

CP1	CP0 (2)	CP1	CP0 (2)	CP1	CP0 (2)		BODEN	CP1	CP0 ⁽²⁾	PWRTE	WDTE	F0SC1	F0SC0
bit 13							Į		ļ		<u> </u>	ļ	bit 0
bit 13-8 5-4:	 3-8, CP<1:0>: Code protection bit pairs ⁽²⁾ Code protection for 2K program memory 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected Code protection for 1K program memory 11 = Program memory code protection off 10 = Program memory code protection off 01 = 0200h-03FFh code protected 00 = 0000h-03FFh code protected 												
	Code protection for 0.5K program memory 11 = Program memory code protection off 10 = Program memory code protection off 01 = Program memory code protection off 00 = 0000h-01FFh code protected												
bit 7	Uniı	npleme	e nted : Re	ead as 'C)'								
bit 6	BOI	DEN: Br	own-out	Reset E	nable bit	(1)							
	1 = 0 =	BOR en BOR dis	abled sabled										
bit 3	PWI 1 = 0 =	RTE : Po PWRT c PWRT e	ower-up T disabled enabled	īmer En	able bit	(1, 3)							
bit 2	WD 1 = ' 0 = '	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0	FOS	C1:FO	SCO: Oso	cillator S	election	bits							
	11 - 10 = 01 = 00 =	11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator											
	Note	 Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Detect Reset is enabled. All of the CR<1:0> pairs have to be given the same value to enable the cade protection enhance. 								the eset is			
		 All of the CP<1:0> pairs have to be given the same value to enable the code protection scheme listed. Unprogrammed parts default the Power-up Timer disabled. 											
Logond	1.												
R = Readable bit W = Writable bit U = Unimplemented bit. read as '0'													

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W		****		1111111 1111111
INDF	00h		_	_
TMR0	01h	xxxx xxxx	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	_	_	_	—	—	—	-0	-0
8Ch	PIE1	—	CMIE	_	_	_	—	_	_	-0	-0

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 9-3 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-3:

- · Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-3: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, ;could be in either bank
SWAPF	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regardless ;of current bank
MOVWF	STATUS_TEMP	;save status to bank 0 ;register
:		
:	(ISR)	
:		
SWAPF	STATUS_TEMP, W	;swap STATUS_TEMP register ;into W, sets bank to origi- nal ;state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
	by a WDT time-out does not drive MCLR
	pin low.

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up, is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the SLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4	4 Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT(4)	Tost(2)/	\/	\/'\	'
INT pin		1	ı ı ı ı	1	I
INTE flag	\		I I		
(INTCON<1>)	·····/	Interrupt Latend	şy		
	<u>i</u>	(Note 2)	i		
(INTCON<7>)	Processor in	1		<u> </u>	<u> </u>
	SLEEP	1	I I	i	i i
INSTRUCTION FLOW		1	і і і і	1	1
PC X PC+1	X PC+2	X PC+2	X PC + 2	<u>x 0004h x</u>	0005h
$\begin{array}{c} \mbox{Instruction} \\ \mbox{fetched} \end{array} \Big\{ \begin{array}{c} \mbox{Inst}(\mbox{PC}) = \mbox{SLEEP} & \mbox{Inst}(\mbox{PC} + 1) \end{array} \right.$		Inst(PC + 2)	 	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC - 1) SLEEP	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP Oscillator mode 2: Tos⊤ = 1024Tosc (drawing n	e assumed. ot to scale) This	delay will not be	e there for RC	Osc mode.	

FIGURE 9-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT

3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

10.1 Instruction Descriptions

ADDLW	Add Literal and W					
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \le k \le 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Encoding:	11 111x kkkk kkkk					
Description:	added to the eight bit literal 'k' and the result is placed in the W register.					
Cycles:	1					
Example	ADDLW 0x15					
	Before Instruction W = 0x10 After Instruction W = 0x25					

ANDLW	AND Literal with W					
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .AND. (k) \rightarrow (W)					
Status Affected:	Z					
Encoding:	11 1001 kkkk kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	ANDLW 0x5F					
	Before Instruction W = 0xA3 After Instruction W = 0x03					
ANDWF	AND W with f					

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(W) + (f) \rightarrow (dest)$					
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF FSR, O					
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2					

ANDWF	AND W with f					
Syntax:	[<i>label</i>] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0101 dfff ffff					
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ANDWF FSR, 1					
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02					

CLRW	Clear W	COMF	Complement f
Syntax:	[label] CLRW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff ffff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0, the
Words:	1		result is stored in W. If 'd' is 1, the
Cycles:	1	Words:	1
Example	CLRW	Cycles:	1
	Before Instruction	Evernle	COME DECI 0
	W = 0x5A	Example	Comp REGI, 0
	W = 0x00		REG1 = 0x13
	Z = 1		After Instruction
			$\begin{array}{rcl} REG1 &= & 0x13 \\ W &= & 0xEC \end{array}$
CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
e jineaa		DECE	Decrement f
Operands:	None	DECF	Decrement f
Operands: Operation:	None $00h \rightarrow WDT$	DECF Syntax:	Decrement f [/abe/] DECF f,d
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$	DECF Syntax: Operands:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$	DECF Syntax: Operands: Operation:	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD	DECF Syntax: Operands: Operation: Status Affected:	Decrement f [label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) 7
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 \qquad 0000 \qquad 0110 \qquad 0100$	DECF Syntax: Operands: Operation: Status Affected: Encoding:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffffff
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ $00 0000 0110 0100$ CLEWDT instruction resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z 00 0011 dffdffDecrement register 'f'If 'd' is 0
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the W
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO}, \overline{PD}$ OUDIAL OF CONSTRUCTION OF CONSTRUCTION OF CONSTRUCTION CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result is
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{10}$ $1 \rightarrow PD$ $\overline{10}, PD$ $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dfffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \text{ instruction resets the} \\ Watchdog Timer. It also resets the \\ prescaler of the WDT. STATUS \\ bits TO and PD are set. \\ 1 \\ \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Decrement f $[label]$ DECF f,d $0 \le f \le 127$ $d \in [0,1]$ $(f) - 1 \rightarrow (dest)$ Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD $00 0000 0110 0100$ CLRWDT instruction resets the Watchdog Timer. It also resets the pres <u>caler of the</u> WDT. STATUS bits TO and PD are set. 1 1	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD 00 0000 0110 0100 CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = 2	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f [<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 → (dest) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1 1 DECF CNT, 1 Before Instruction CNT = 0x01
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNTCNT Z 0
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow TO \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \ instruction \ resets the \\ Watchdog \ Timer. It also resets the \\ prescaler \ of \ the \ WDT. \ STATUS \\ bits \ TO \ and \ PD \ are \ set. \\ 1 \\ 1 \\ \hline \\ CLRWDT \\ \hline \\ Before \ Instruction \\ \ WDT \ counter \ = \ ? \\ After \ Instruction \\ \ WDT \ counter \ = \ 0x00 \\ \hline \end{array}$	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z 00 0011 dffffffDecrement register 'f'. If 'd' is 0,the result is stored in the Wregister. If 'd' is 1, the result isstored back in register 'f'.11DECFCNT, 1Before Instruction $CNT = 0x01$ $Z = 0$ After Instruction
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $\begin{array}{c} 00h \rightarrow WDT\\ 0 \rightarrow WDT \text{ prescaler,}\\ 1 \rightarrow \overline{TO}\\ 1 \rightarrow PD\\ \hline \overline{TO}, \overline{PD}\\ \hline \hline 00 & 0000 & 0110 & 0100\\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits \overline{TO} and \overline{PD} are set. 1 1 CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = 0 \overline{TO} = 1	DECF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Decrement f[label] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)Z000011dffffffDecrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.11DECFCNT, 1Before Instruction $Z = 0$ After Instruction $CNT = 0x01$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$

NOTES:

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	ard Op	eratin	g Cond	litions (unless otherwise stated)
PIC16C	R62XA-(04	Opera	ting ten	nperat	ure -4	$0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and
PIC16C	R62XA-2	20		•			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and
						-4	$0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
			Stand	ard Op	eratin	a Conc	titions (unless otherwise stated)
			Opera	ting ten	nerat	ure -4	0° C < TA < +85°C for industrial and
PIC16L0	CR62XA	04	opora	ling ton	porat		0° C < TA < +70°C for commercial and
						-40	1° C < TA < +125°C for extended
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito	
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions
NU.	1	(2)			050		
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V
				0.400	1.0	μΑ	
				0.600	2.2	μΑ	VDD - 5.5V
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V
				200	950	nA A	$VDD = 3.0V^{*}$
			_	0.600	2.2	μΑ	VDD = 5.5V
D aga		(5)		5.0	9.0	μΑ	
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$
D023		Comparator Current for each		30	60	μA	VDD = 4.0V
00234		Vere Current ⁽⁵⁾		80	125		
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X/C6	2XA/CR62XA	Standa Operati	ing terr	e rating iperatu	g Condi ıre -40 0 -40	tions (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
PIC16L	C62X/L	C62XA/LCR62XA	$\begin{array}{l lllllllllllllllllllllllllllllllllll$				
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C
			_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C
			_	_	0.6	V	IoL = 1.2 mA, VDD = 4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (Except RA4)	VDD-0.7		_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С
			VDD-0.7		_	V	Іон = -2.5 mA, Vdd = 4.5V, +125°C
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	_	V	ІОН = -1.3 mA, VDD = 4.5V, -40° to +85°С
			VDD-0.7	_	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°С
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (Except RA4)	VDD-0.7	_	—	V	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°C
			VDD-0.7	_	_	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С
			VDD-0.7		—	V	IOH = -1.0 mA, VDD = 4.5V, +125°С
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA
		Capacitive Loading Specs on Output Pins					
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF	
		Capacitive Loading Specs on Output Pins					
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

*

TABLE 12-1: COMPARATOR SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments
Input offset voltage			± 5.0	± 10	mV	
Input common mode voltage		0		Vdd - 1.5	V	
CMRR		+55*			δβ	
Response Time ⁽¹⁾			150*	400* 600*	ns ns	PIC16C62X(A) PIC16LC62X
Comparator mode change to output valid				10*	μS	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 12-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions:VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in Table 12-1.

Characteristics	Sym	Min	Тур	Мах	Units	Comments
Resolution			Vdd/24 Vdd/32		LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Absolute Accuracy				<u>+</u> 1/4 <u>+</u> 1/2	LSB LSB	Low Range (VRR=1) High Range (VRR=0)
Unit Resistor Value (R)			2K*		Ω	Figure 8-1
Settling Time ⁽¹⁾				10*	μs	
* These parameters are characterize Note 1: Settling time measured w	zed but not hile VRR =	tested. 1 and VR<3	:0> transitio	ons from 0000) to 1111	

DS30235J-page 102

FIGURE 12-16: TIMER0 CLOCK TIMING

TABLE 12-6: TIMER0 CLOCK REQUIREMENT

Parameter No.	Sym	Characteristic	:	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	—		ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	—	-	ns	
			With Prescaler	10*	—	-	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	-		ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)50
Р
Package Marking Information
Packaging Information
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit79
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register
Port RB Interrupt
PORTA
PORTB
Power Control/Status Register (PCON)
Power-Down Mode (SLEEP)
Power-On Reset (POR)
Power-up Timer (PWRT)
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices
R
RC Oscillator
Reset49
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

0	
Serialized Quick-Turnaround-Production (SQTP) De	vices 7
SLEEP Instruction	71
Software Simulator (MPLAB SIM)	76
Software Simulator (MPLAB SIM30)	76
Special Features of the CPU	45
Special Function Registers	17
Stack	23
Status Register	18
SUBLW Instruction	72
SUBWF Instruction	72
SWAPF Instruction	73

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	35
Timing Diagrams and Specifications	
TMR0 Interrupt	
TRIS Instruction	73
TRISA	25
TRISB	

v

Voltage Reference Module VRCON Register	43 43
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	.73

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manag	er Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16C62X	_iterature Number: DS30235J
Que	stions:	
1. \	What are the best features of this	document?
-		
<u>-</u>		
2. I	How does this document meet yo	ar hardware and software development needs?
-		
3. [Do you find the organization of thi	s document easy to follow? If not, why?
_		
_		
4. \	What additions to the document d	o you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the documen	t could be made without affecting the overall usefulness?
-		
- 6 I	s there any incorrect or misleadin	a information (what and where)?
0. 1		
-		
7. H	How would you improve this docu	ment?
_		
-		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	E	xamples:
Device	Frequency Range	Temperature Range	Package	Pattern	a)	 PIC16C621A - 04/P 301 = Commercial temp PDIP package, 4 MHz, normal VDD limits, QT pattern #301.
Device Frequency Range	PIC16C6 PIC16C6 PIC16C6 PIC16LC PIC16LC PIC16LC PIC16LC PIC16LC PIC16CF PIC16CF PIC16CC PIC16LC 04 200 04 4 M 20 20 M	52X: VDD range 3.0 52X: VDD range 3.0 52XA: VDD range 3.0 52XA: VDD range 2.5 562XA: VDD range 2.5 572XA: VD range	/ to 6.0V // to 6.0V (Tape 0V to 5.5V 0V to 5.5V (Taj 5V to 6.0V .5V to 6.0V (Taj .5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.0V to 5.5V 2.0V to 5.5V (Taj .5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5.5V .5V to 5.5V to 5	e and Reel) be and Reel) be and Reel) ape and Reel) ape and Reel) Tape and Reel))	 PIC16LC622- 04I/SO = Industrial temp., SOI package, 200 kHz, extended VDD limits.
emperature Range	e - = I = E =	0°C to +70°C -40°C to +85°C -40°C to +125°C				
Package	P = SO = SS = JW* =	PDIP SOIC (Gull Wing, SSOP (209 mil) Windowed CERD	, 300 mil body) NP			
Pattern	3-Digit Pa	attern Code for QTF	Optimize (blank otherwise)	se)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.