

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

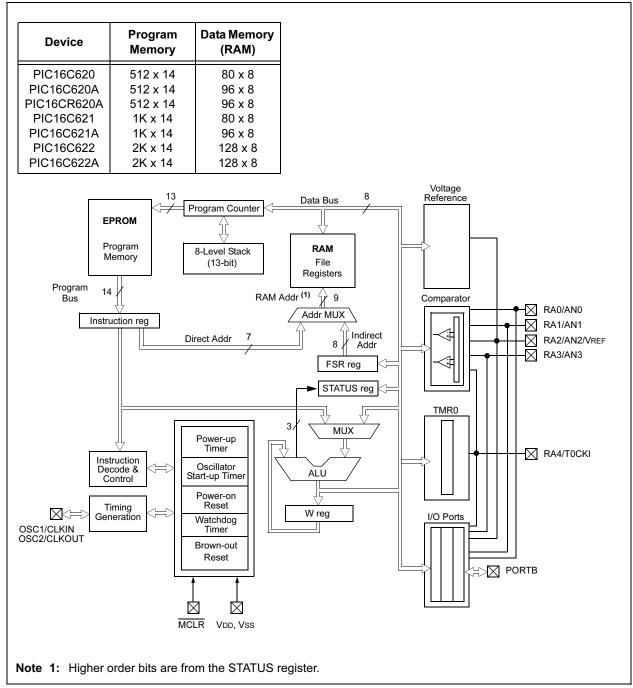
The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

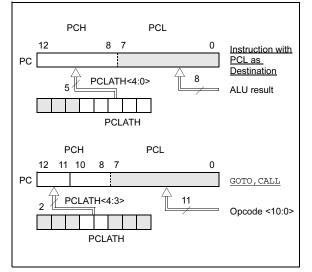
Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.


© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.


FIGURE 3-1: BLOCK DIAGRAM

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

TABLE 5-1:PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function	
RA0/AN0	bit0	ST	Input/output or comparator input	
RA1/AN1	bit1	ST	Input/output or comparator input	
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output	
RA3/AN3	bit3	ST	Input/output or comparator input/output	
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.	

Legend: ST = Schmitt Trigger input

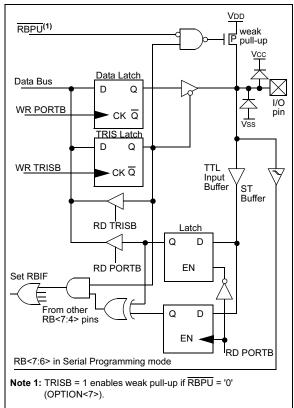
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA			_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by PORTA.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a High Impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

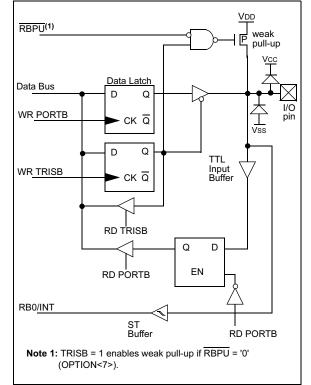
Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A \ typical$). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (e.g., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

FIGURE 5-5: BLOCK DIAGRAM OF RB<7:4> PINS

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

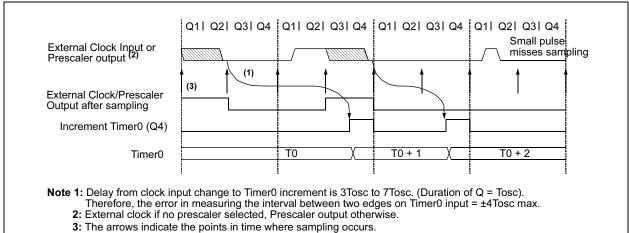
This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes.)

Note:	If a change on the I/O pin should occur			
	when the read operation is being executed			
	(start of the Q2 cycle), then the RBIF inter-			
	rupt flag may not get set.			

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

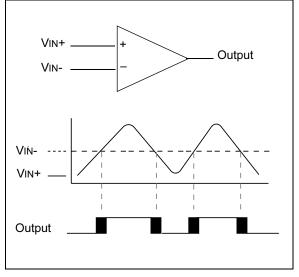
6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode	
MOVWF	CMCON	;CM<2:0> = 011	
CLRF	PORTA	;Init PORTA	
BSF	STATUS, RPO	;Select Bank1	
MOVLW	0x07	;Initialize data direction	
MOVWF	TRISA	;Set RA<2:0> as inputs	
		;RA<4:3> as outputs	
		;TRISA<7:5> always read `0'	
BCF	STATUS, RPO	;Select Bank 0	
CALL	DELAY 10	;10µs delay	
MOVF	CMCON,F	;Read CMCONtoend change condition	
BCF	PIR1,CMIF	;Clear pending interrupts	
BSF	STATUS, RPO	;Select Bank 1	
BSF	PIE1,CMIE	;Enable comparator interrupts	
BCF	STATUS, RPO	;Select Bank 0	
BSF	INTCON, PEIE	;Enable peripheral interrupts	
BSF	INTCON, GIE	;Global interrupt enable	


7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR1<6>)
	interrupt flag may not get set.

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

7.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will

Vdd ∆Vt = 0.6V RIC Rs < 10K Δικ **I**LEAKAGE CPIN VT = 0.6V ±500 nA 5 pF Vss Input Capacitance Legend CPIN = Threshold Voltage Vт = Leakage Current at the pin due to various junctions ILEAKAGE = = Interconnect Resistance RIC Rs = Source Impedance Analog Voltage VA =

FIGURE 7-4: ANALOG INPUT MODEL

wake up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

7.8 Effects of a RESET

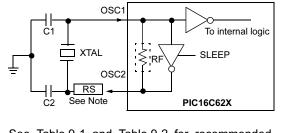
A device RESET forces the CMCON register to its RESET state. This forces the comparator module to be in the comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

7.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A maximum source impedance of $10 \ k\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

9.2 Oscillator Configurations

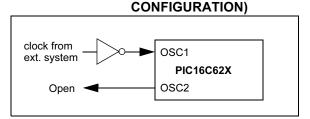
9.2.1 OSCILLATOR TYPES


The PIC16C62X devices can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).


FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 9-1 and Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

R	anges Charao	21			
Mode	Freq	0562(C2)			
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	82 - 100 pF 15 - 68 pF 15 - 68 pF		
HS	8.0 MHz 16.0 MHz 🔨	10-68 pF 10-22 pF	10 - 68 pF 10 - 22 pF		
Higher capacitance increases the stability of the oscil- lator but also increases the start-up time. These walkes are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.					

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)			
LP	32 kHz	68 - 100 pF	68 - 100 pF			
	200 kHz	15 - 30 pF	15 - 30 pF			
хт	100 kHz	68 - 150 pF	150-300 pF			
	2 MHz	15 - 30 pF	15-30 pF			
	4 MHz	15 - 30 pF	15-30 pF			
HS	8 MHz	15-30 pF	^V 15 - 30 pF			
	10 MHz	15-30 pF	15 - 30 pF			
	20 MHz 🔨	15-30 pF	15 - 30 pF			
Higher capacitance increases the stability of the oscillator but also increases the stat-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.						

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	<u>uuuu</u> uuuu	<u></u>
INDF	00h		_	_
TMR0	01h	xxxx xxxx	սսսս սսսս	นนนน นนนน
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	<u>uuuu</u> uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q (2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

PIC16C62X

CLRW	Clear W	COMF	Complement f
Syntax:	[<i>label</i>] CLRW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \leq f \leq 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff ffff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the
Words:	1		result is stored back in register 'f'.
Cycles:	1	Words:	1
Example	CLRW	Cycles:	1
	Before Instruction W = 0x5A	Example	COMF REG1,0
	W = 0x5A After Instruction		Before Instruction
	W = 0x00 $Z = 1$		REG1 = 0x13 After Instruction $REG1 = 0x13$ $W = 0xEC$
CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
-j		DECF	Decrement f
Operands:	None	DECF Svntax:	Decrement f
-	None $00h \rightarrow WDT$	Syntax:	[label] DECF f,d
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler,	_	
Operands:	None $00h \rightarrow WDT$	Syntax:	[<i>label</i>] DECF f,d 0 ≤ f ≤ 127
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow TO$	Syntax: Operands:	[<i>label</i>] DECF f,d 0 ≤ f ≤ 127 d ∈ [0,1]
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$	Syntax: Operands: Operation:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest)
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD	Syntax: Operands: Operation: Status Affected:	[<i>label</i>] DECF f,d $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ \overline{TO}, PD 00 0000 0110 0100 CLRWDT instruction resets the Watchdog Timer. It also resets the pres <u>caler</u> of <u>the</u> WDT. STATUS	Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO$ $1 \rightarrow PD$ TO, PD OUDIMIC OTIO CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 \qquad dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \hline TO, PD \\ \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set. 1	Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{bmatrix} label \end{bmatrix} DECF f,d$ $0 \le f \le 127$ $d \in [0,1]$ (f) - 1 \rightarrow (dest) Z $\boxed{00 \qquad 0011 dfff \qquad ffff}$ Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. 1

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:		Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk		
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0,
	the W register.		the result is stored in the W register.
Words:	1		If 'd' is 1, the result is stored back in
Cycles:	1		register 'f'.
Example 1:	SUBLW 0x02	Words:	1
·	Before Instruction	Cycles:	1
	W = 1	Example 1:	SUBWF REG1,1
	C = ?		Before Instruction
	After Instruction		REG1= 3 W = 2
	W = 1 C = 1; result is positive		C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2		REG1= 1
	C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0	·	REG1= 2
	C = 1; result is zero		W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction
	After Instruction		REG1= 0 W = 2
	W = 0 x F F		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1= 1 W = 2
			W = 2 C = ?
			After Instruction
			REG1= 0xFF
			W = 2
			C = 0; result is negative

PIC16C62X

NOTES:

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

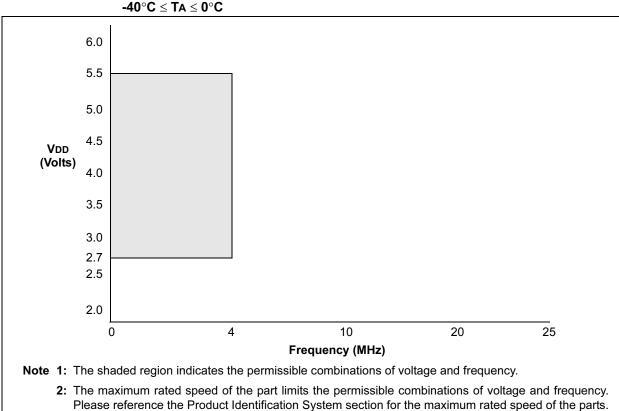
The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

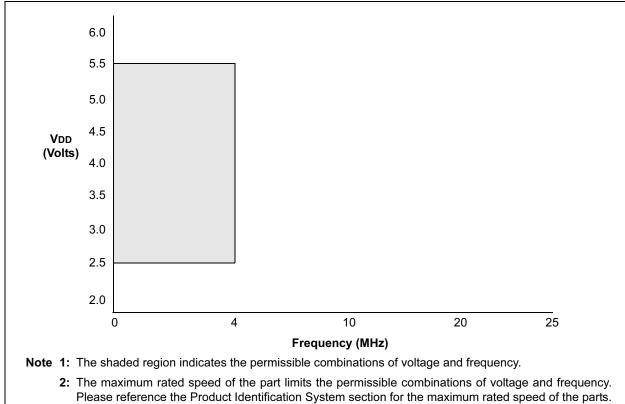
MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.


The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:


- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

PIC16C62X

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62X				Standard Operating Conditions (unless otherwise stated)						
				Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended						
PIC16LC62X				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each		6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD enabled, VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD enabled, VDD = 5.0V$ $VDD = 3.0V$			
D023A	P ΔIVREF	Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾	—	_	300	μA	VDD = 3.0V			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA PIC16LC62XA			Oper Stand Oper	$ \begin{array}{ c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^{\circ}\text{C} & \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial and} \\ & 0^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial and} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array} $						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D010	IDD	Supply Current ^(2, 4)		1.2 0.4 1.0	2.0 1.2 2.0	mA mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)* Fosc = 10 MHz, VDD = 3.0V, WDT dis-			
			_	4.0	6.0 7.0	mA	abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis- abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis-			
			_	35	70	μA	abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled, LP mode			
D010	IDD	Supply Current ⁽²⁾	_	1.2 — 35	2.0 1.1 70	mA mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT dis-			
D020	IPD	Power-down Current ⁽³⁾			2.2 5.0	μΑ μΑ μΑ	abled, LP mode VDD = 3.0V VDD = 4.5V*			
					9.0 15	μA μA	VDD = 5.5V VDD = 5.5V Extended Temp.			
D020	IPD	Power-down Current ⁽³⁾		 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Sym	Characteristic		Min Typ† Max Units		Units	Conditions		
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared		
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*		
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)		
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)		
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode		
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode		
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode		
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V		
			—	—	5.0	μA	VDD = 4.5V*		
			—	—	9.0	μA	VDD = 5.5V		
		(5)	—	—	15	μA	VDD = 5.5V Extended		
D022	Δ IWDT	WDT Current ⁽⁵⁾	—	6.0	10	μA	VDD = 4.0V		
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$		
D022A D023	∆IBOR ∆ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V		
		Comparator ⁽⁵⁾							
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V		
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz		
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA			
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc		
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures		
		RC Oscillator Operating Frequency	0	-	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	U		20	MHz	All temperatures		

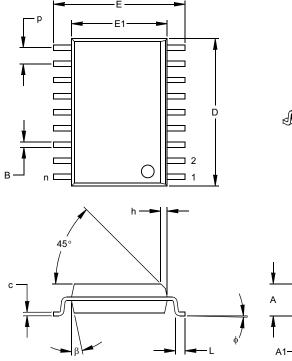
These parameters are characterized but not tested.

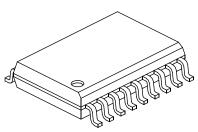
† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

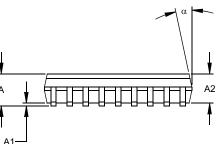
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP


mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.


5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units		INCHES*		MILLIMETERS		
Dimension	MIN	NOM	MAX	MIN NOM		MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom		0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

PIC16C62X

NOTES: