

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

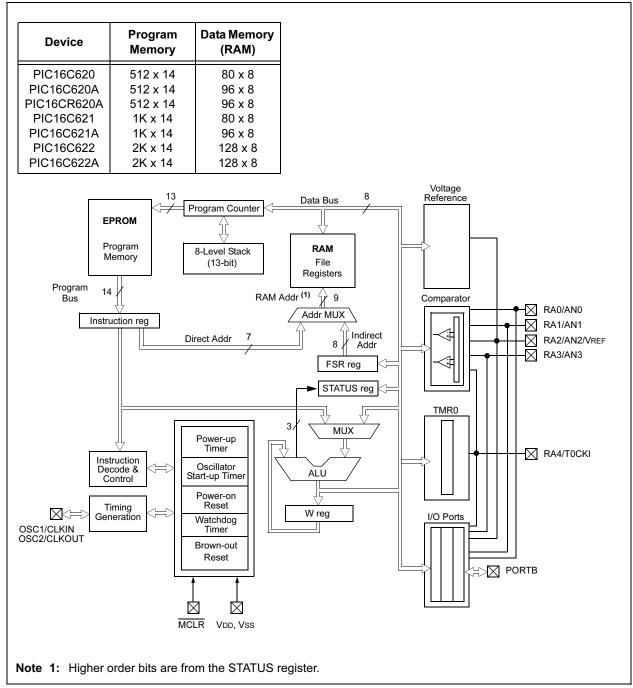
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c622t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7


Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

FIGURE 3-1: BLOCK DIAGRAM

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

File			File	
Address	3		Address	
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h	
01h	TMR0	OPTION	81h	
02h	PCL	PCL	82h	
03h	STATUS	STATUS	83h	
04h	FSR	FSR	84h	
05h	PORTA	TRISA	85h	
06h	PORTB	TRISB	86h	
07h			87h	
08h			88h	
09h			89h	
0Ah	PCLATH	PCLATH	8Ah	
0Bh	INTCON	INTCON	8Bh	
0Ch	PIR1	PIE1	8Ch	
0Dh			8Dh	
0Eh		PCON	8Eh	
0Fh			8Fh	
10h			90h	
11h			91h	
12h			92h	
13h			93h	
14h			94h	
15h			95h	
16h			96h	
17h			97h	
18h			98h	
19h			99h	
1Ah			9Ah	
1Bh			9Bh	
1Ch			9Ch	
1Dh			9Dh	
1Eh			9Eh	
1Fh	CMCON	VRCON	9Fh	
20h		_	A0h	
	General			
	Purpose Register			
6Fh	5			
70h				
7Fh			FFh	
	Bank 0	Bank 1		
—		1 4		
Unimp	Unimplemented data memory locations, read as '0'.			
Note 1:	Not a physical re	egister.		

FIGURE 4-5:

DATA MEMORY MAP FOR THE PIC16C622

	1116				
File Address	8		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
00h	TOILID	TRIOD	87h		
07h 08h			88h		
00h			89h		
03h 0Ah	PCLATH	PCLATH	8Ah		
0An 0Bh	INTCON	INTCON	8Bh		
0Dh	PIR1	PIE1	8Ch		
0Ch 0Dh	PIRI	PIEI	8Dh		
		PCON			
0Eh 0Fh		PCON	8Eh		
			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h			A0h		
	General Purpose	General Purpose			
	Register	Register			
	0	5	BFh		
			C0h		
7Fh			FFh		
Bank 0 Bank 1					
Unim	plemented data me	mory locations, re	ad as '0'.		
Note 1: Not a physical register.					

FIGURE 4-6: DATA MEMORY MAP FOR THE PIC16C620A/CR620A/621A

	11010002		- 17 (
File Address	3		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h			87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Fh			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h	General Purpose Register		A0h		
6Fh					
70h	General		F0h		
	Purpose Register	Accesses 70h-7Fh	FFh		
7Fh	Bank 0 Bank 1				
Unimplemented data memory locations, read as '0'.					
Note 1: Not a physical register.					

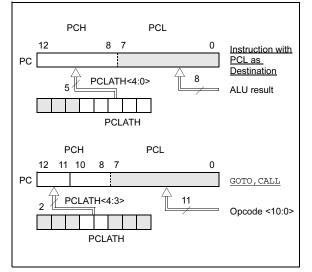
FIGURE 4-7: DATA MEMORY MAP FOR THE PIC16C622A

		C10C022A	
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
	General	General	Aon
	Purpose Register	Purpose Register	
	rtegister	rtegister	BFh
			C0h
0.51			
6Fh	0		F0h
70h	General Purpose	Accesses	
754	Register	70h-7Fh	FFh
7Fh	Bank 0	Bank 1	→ FF11
Unimplemented data memory locations, read as '0'.			
Note 1: Not a physical register.			

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).


	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7					•		bit 0
bit 7	RBPU: PO	RTB Pull-u	p Enable bi	it				
		3 pull-ups ai 3 pull-ups ai		y individual	port latch va	alues		
bit 6	INTEDG: I	nterrupt Edg	e Select bit	-				
			edge of RB0 edge of RB0					
bit 5	TOCS: TMI	R0 Clock Sc	ource Select	bit				
		ion on RA4/ Il instruction	T0CKI pin cycle clock	(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	Edge Select	bit				
				ition on RA4 ition on RA4				
bit 3	PSA: Pres	caler Assigr	iment bit		-			
			ned to the W ned to the Ti	DT mer0 module	Э			
bit 2-0	PS<2:0> : [Prescaler Ra	ate Select bi	ts				
	E	Bit Value T	MR0 Rate	WDT Rate				
	-	0000001	1:2 1:4	1:1 1:2				
		010 011	1 : 8 1 : 16	1:4 1:8				
		100	1:32	1:16				
		101	1:64	1:32				
	110 1:128 1:64							
	111 1 : 256 1 : 128							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

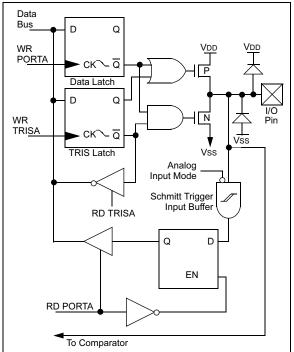
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

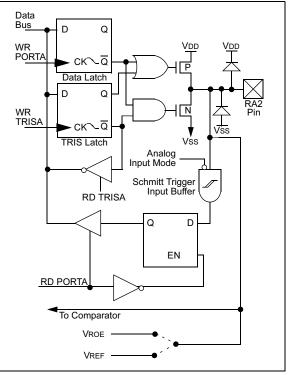
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

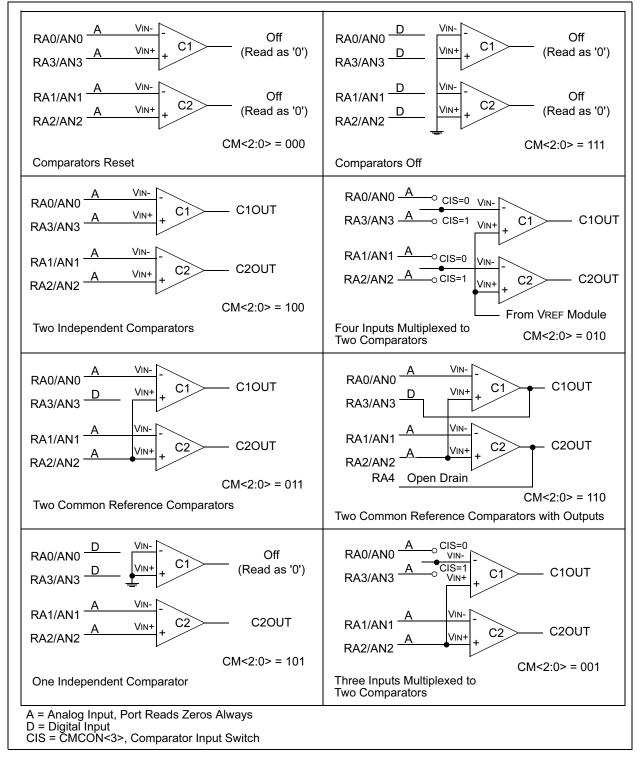

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN



7.1 Comparator Configuration

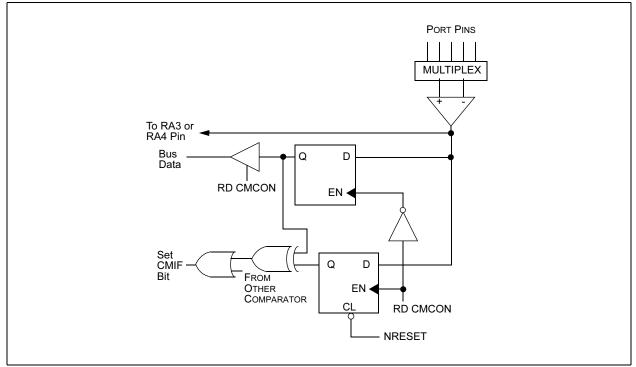
There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).


7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

MOVF	Move f						
Syntax:	[<i>label</i>] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(f) \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	00 1000 dfff ffff						
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Example	MOVF FSR, 0						
	After Instruction W = value in FSR register Z = 1						
MOVWF	Move W to f						
Syntax:	[<i>label</i>] MOVWF f						
Operands:	$0 \le f \le 127$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Encoding:	00 0000 1fff ffff						
Description:	Move data from W register to reg- ister 'f'.						
Words:	1						
Cycles:	1						
Example	MOVWF OPTION						
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F						
	$\begin{array}{rcl} \text{OPTION} &= & 0x4F \\ \text{W} &= & 0x4F \end{array}$						

NOP	No Operation					
Syntax:	[label] NOP					
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No opera	ition.				
Words:	1					
Cycles:	1					
Example	NOP					

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	N	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The control loaded in This instr code con products. able/writa directly a	the OP fuction is apatibility Since C able regis	FION regi supporte with PIC PTION is ster, the u	ster. ed for 16C5X a read-
Words:	1			
Cycles:	1			
Example				
	ity with	future P s, do no	vard com PICmicro [©] ot use thi	B

RLF	Rotate	Left f thr	oua	h Car	rv
Syntax:	[label]	RLF	f,d		
Operands:	0 ≤ f ≤ 1 d ∈ [0,1				
Operation:	See des	scription I	pelov	N	
Status Affected:	С				
Encoding:	00	1101	df	ff	ffff
escription:	rotated the Carr is place		the 'd' is V reg	left th 0, the jister. back	rough e result If 'd' is
Vords:	1				
Cycles:	1				
xample	RLF	REG1,	0		
	Before I After Ins	nstructio REG1 C struction REG1 W	n = = =	1110 0 1110 1100	
		С	=	1	

RRF	Rotate R	ight f th	nroug	gh Ca	arry	
Syntax:	[label]	RRF f	,d			
Operands:	$\begin{array}{l} 0\leq f\leq 12\\ d\in [0,1] \end{array}$	0 ≤ f ≤ 127 d ∈ [0,1]				
Operation:	See desc	ription b	elow	'		
Status Affected:	С					
Encoding:	00	1100	df	ff	ffff	
Description:	The conternation of the Carry is placed 1, the restrict register 'f	ne bit to Flag. If in the V sult is pla	the ri 'd' is / reg	ight th 0, the ister.	nrough e result If 'd' is	
		; _▶	Regis	ter f	}	
Words:	1					
Cycles:	1					
Example	RRF		REG 0	61,		
	Before In	structior	ı			
		REG1 C	= =	1110 0	0110	
	After Inst					
	1	REG1 W C	= = =	1110 0111 0		

SLEEP

VIII				
Syntax:	[label]	SLEEF	D	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow V \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow PD \end{array}$	T presca	aler,	
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0011
Description:	PD is cle STATUS dog Time cleared. The proc mode wi	ver-down eared. Tin bit, TO i er and its cessor is th the os . See Se tails.	me-out is set. W s prescal put into s scillator	atch- er are SLEEP
Words:	1			
Cycles:	1			
Example:	SLEEP			

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

11.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

PIC16CR62XA-04 PIC16CR62XA-20	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
PIC16LCR62XA-04	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Param. Sym Characteristic No.	Min Typ† Max Units Conditions

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC	TERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	_	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise	
D031		with Schmitt Trigger input	Vss		0.2VDD	V		
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)	
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V		
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V		
	Vih	Input High Voltage						
		I/O ports						
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V, otherwise	
			0.25 VDD + 0.8		Vdd			
D041		with Schmitt Trigger input	0.8 VDD		Vdd			
D042		MCLR RA4/T0CKI	0.8 VDD	—	Vdd	V		
D043		OSC1 (XT, HS and LP)	0.7 Vdd	—	Vdd	V		
D043A		OSC1 (in RC mode)	0.9 VDD				(Note 1)	
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2, 3)						
		I/O ports (except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D060		PORTA	—	—	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \le VPIN \le VDD$	
D063		OSC1, MCLR	_	—	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	Vol	Output Low Voltage						
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C	
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C	
D083		OSC2/CLKOUT (RC only)	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C	
					0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C	
	Vон	Output High Voltage ⁽³⁾						
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C	
			VDD-0.7	_	—	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C	
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C	
			VDD-0.7	-	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°C	
*D150	Vod	Open Drain High Voltage			8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins						
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.	
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF		
		parameters are characterized but not	<u> </u>	1	~~	۳.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial			
Characteristic	Sym	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
Supply Voltage	Vdd	4.5	—	5.5	V	HS Option from 20 - 40 MHz	
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode	
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected	
Input Low Voltage OSC1	VIL	Vss	—	0.2Vdd	V	HS mode, OSC1 externally driven	
Input High Voltage OSC1	Vih	0.8Vdd		Vdd	V	HS mode, OSC1 externally driven	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, \overline{MCLR} = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

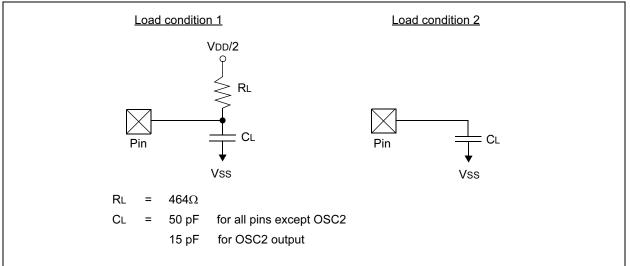
12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)

AC CHARACTERISTICS All Pins Except Power Supply Pir		Standard Operating Conditions (unless otherwise stateOperating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commerce				
Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
External CLKIN Frequency	Fosc	20	—	40	MHz	HS mode, OSC1 externally driven
External CLKIN Period	Tosc	25	_	50	ns	HS mode (40), OSC1 externally driven
Clock in (OSC1) Low or High Time	TosL, TosH	6	—		ns	HS mode, OSC1 externally driven
Clock in (OSC1) Rise or Fall Time	TosR, TosF		_	6.5	ns	HS mode, OSC1 externally driven
OSC1↑ (Q1 cycle) to Port out valid	TosH2ıoV		—	100	ns	_
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	—	_	ns	—

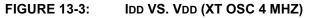
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

12.8 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS


2. TppS

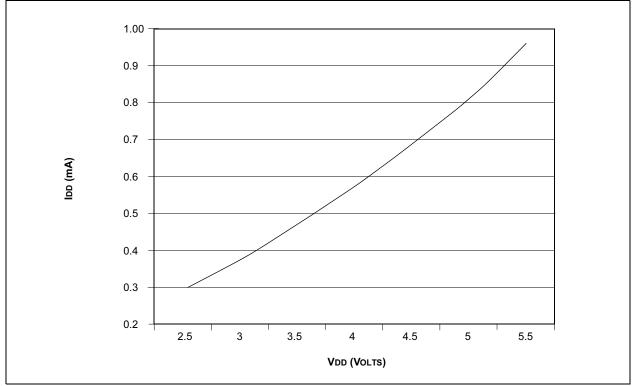

2. Tpp3			
т			
F	Frequency	Т	Time
Lowerca	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	osc	OSC1
io	I/O port	t0	ТОСКІ
mc	MCLR		
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 12-11: LOAD CONDITIONS

PIC16C62X

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

PIC16C62X

NOTES:

PIC16C62X

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)
Р
Package Marking Information117
Packaging Information113
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register21
Port RB Interrupt
PORTA25
PORTB
Power Control/Status Register (PCON)51
Power-Down Mode (SLEEP)
Power-On Reset (POR)
Power-up Timer (PWRT)50
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices7
R
RC Oscillator
Reset
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

S

Serialized Quick-Turnaround-Production (SQTP) Devices 7	7
SLEEP Instruction71	1
Software Simulator (MPLAB SIM)76	
Software Simulator (MPLAB SIM30)76	6
Special Features of the CPU45	5
Special Function Registers17	7
Stack	3
Status Register18	3
SUBLW Instruction72	2
SUBWF Instruction72	2
SWAPF Instruction	3

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	
Timing Diagrams and Specifications	104
TMR0 Interrupt	56
TRIS Instruction	73
TRISA	25
TRISB	

V

Voltage Reference Module VRCON Register	
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	. 73