

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	. 5
2.0	PIC16C62X Device Varieties	. 7
3.0	Architectural Overview	. 9
4.0	Memory Organization	13
5.0	I/O Ports	25
6.0	Timer0 Module	31
7.0	Comparator Module	37
8.0	Voltage Reference Module	43
9.0	Special Features of the CPU	45
10.0	Instruction Set Summary	61
11.0	Development Support	75
12.0	Electrical Specifications	81
13.0	Device Characterization Information	09
14.0	Packaging Information 1	13
Append	Jix A: Enhancements 1	19
Append	dix B: Compatibility 1	19
Index		21
On-Line	e Support 1	23
System	Information and Upgrade Hot Line	23
Reader	r Response 1	24
Produc	t Identification System 1	25

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

FIGURE 4-6: DATA MEMORY MAP FOR THE PIC16C620A/CR620A/621A

File Address	5		File Address		
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h		
01h	TMR0	OPTION	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h			87h		
08h			88h		
09h			89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	PIR1	PIE1	8Ch		
0Dh			8Dh		
0Eh		PCON	8Eh		
0Fh			8Fh		
10h			90h		
11h			91h		
12h			92h		
13h			93h		
14h			94h		
15h			95h		
16h			96h		
17h			97h		
18h			98h		
19h			99h		
1Ah			9Ah		
1Bh			9Bh		
1Ch			9Ch		
1Dh			9Dh		
1Eh			9Eh		
1Fh	CMCON	VRCON	9Fh		
20h	General Purpose Register		A0h		
6Fh					
70h	General		F0h		
7011	Purpose	Accesses			
7Fh	Register	1011-1711	FFh		
	Bank 0	Bank 1			
Unimplemented data memory locations, read as '0'.					
Note 1:	Not a physical re	gister.			

FIGURE 4-7: DATA MEMORY MAP FOR THE PIC16C622A

File Address	;		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dn			
1En	014001		9En
1Fn	CMCON	VRCON	9Fn
20h	General	General	A0h
	Purpose	Purpose	
	Register	Register	BFh
			C0h
			0011
6Fh			– F0h
70h	General	Accesses	
	Register	70h-7Fh	EEh
/Fhl	Bank 0	Bank 1	
Unimp	elemented data me	mory locations, re	ead as '0'.
Note 1:	Not a physical re	egister.	

4.2.2.4 PIE1 Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)							
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
		CMIE	—	_	—	_		
	bit 7							bit 0
bit 7	Unimpleme	nted: Read	d as '0'					
bit 6	CMIE: Com	parator Inte	errupt Enable	e bit				
1 = Enables the Comparator interrupt0 = Disables the Comparator interrupt								
bit 5-0	Unimpleme	nted: Read	d as '0'					
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'
	- n = Value a	at POR	'1' = Bi	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

_I\ 4 -J.	FINT REGISTER (ADDRESS COT)							
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	CMIF		_	—	_	—	_
	bit 7							bit 0
bit 7	Unimplem	ented: Rea	d as '0'					
bit 6	CMIF: Com	nparator Inte	errupt Flag b	it				
	1 = Compa	rator input h	nas changed					
	0 = Compa	rator input h	nas not chan	ged				
bit 5-0) Unimplemented: Read as '0'							
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOR is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent RESETS to see if BOR is
	cleared, indicating a brown-out has
	occurred. The $\overline{\text{BOR}}$ STATUS bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	Configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset STATUS bit

- 1 = No Power-on Reset occurred
- 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR**: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).

7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF
	interrupt flag may not get set.

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

Field	Description				
f	Register file address (0x00 to 0x7F)				
W	Working register (accumulator)				
b	Bit address within an 8-bit file register				
k	Literal field, constant data or label				
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.				
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1				
label	Label name				
TOS	Top of Stack				
PC	Program Counter				
PCLAT H	Program Counter High Latch				
GIE	Global Interrupt Enable bit				
WDT	Watchdog Timer/Counter				
ТО	Time-out bit				
PD	Power-down bit				
dest	Destination either the W register or the specified register file location				
[]	Options				
()	Contents				
\rightarrow	Assigned to				
<>	Register bit field				
∈	In the set of				
italics	User defined term (font is courier)				

The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.

Note:	To maintain upward compatibility with	1
	future PICmicro® products, do not use the	;
	OPTION and TRIS instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

10.1 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \rightarrow (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	added to the eight bit literal 'k' and the result is placed in the W register.				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction W = 0x10 After Instruction W = 0x25				

ANDLW	AND Literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	11 1001 kkkk kkkk				
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ANDLW 0x5F				
	Before Instruction W = 0xA3 After Instruction W = 0x03				
ANDWF	AND W with f				

Add W and f			
[label] ADDWF f,d			
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
$(W) + (f) \rightarrow (dest)$			
C, DC, Z			
00 0111 dfff ffff			
Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
1			
1			
ADDWF FSR, O			
Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2			

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 0101 dfff ffff			
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ANDWF FSR, 1			
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02			

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$
Operation:	0 ≤ b < 7 skip if (f) = 1 None	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>
Encoding:	01 11bb bfff ffff	Status Affected:	None
Description:	If hit 'h' in register 'f' is '1' then the	Encoding:	10 Okkk kkkk kkkk
	next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is
Words:	1	\A/a vala -	a two-cycle instruction.
Cycles:	1(2)	vvoras:	1
Example	HERE BTFSS FLAG,1	Cycles:	Z
	<pre>FALSE GOTO PROCESS_CO TRUE • DE • • Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE</pre>	Example	HERE CALL THER E
			PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1
	IC- address TRUE	CLRF	Clear f
		Syntax:	[<i>label</i>] CLRF f
		Operands:	$0 \le f \le 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
		Status Affected:	Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF FLAG_REG
			Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0					
Status Affected:	None					
Encoding:	00 1011 dfff ffff					
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction					
Words:	1					
Cycles:	1(2)					
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • •					
	After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1					
GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>					
Status Affected:	None					
Encoding:	10 1kkk kkkk kkkk					
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.					
Words:	1					
Cycles:	2					
Example	GOTO THERE					
	After Instruction PC = Address THERE					

INCF	Increment f				
Syntax:	[<i>label</i>] INCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 1010 dfff ffff				
Description:	I he contents of register 'f are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example	INCF CNT, 1				
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1				

RLF	Rotate	Left f th	oug	h Car	ry	
Syntax:	[label]	RLF	f,d			I
Operands:	0 ≤ f ≤ 1 d ∈ [0,1	27]				
Operation:	See des	scription	belo	w		
Status Affected:	С					
Encoding:	00	1101	d	fff	ffff]
Description:	rotated the Carr is place 1, the re register	one bit to ry Flag. If d in the \ esult is sf 'f.	regis the 'd' is V reg ored	left th s 0, the gister. I back	are irough e result If 'd' is in	
Words:	1					
Cycles:	1					
Example	RLF	REG1,	0			
	Before Instruction					
		REG1	=	111	0 0110	
	After In	C	=	0		
	7 1101 111	REG1	=	111	0 0110	
		W	=	110	0 1100	
		С	=	1		

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	See description below					
Status Affected:	С					
Encoding:	00	1100	df	ff	ffff	
Description:	The contents of register 'f are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
	C Register f]->	
Words:	1					
Cycles:	1					
Example	mple RRF REG1, 0					
	Before In	structior	ı			
		REG1	=	1110	0110	
	After Instruction					
		REG1	=	1110	0110	
		W	=	0111	0011	
		C	=	0		

SLEEP

Syntax:	[label]	SLEEF	D		
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler,} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \underline{PD} \end{array}$				
Status Affected:	TO, PD				
Encoding:	00	0000	0110	0011	
Description:	The power-down STATUS bit, PD is cleared. Time-out STATUS bit, TO is set. Watch- dog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 9.8 for more details				
Words:	1				
Cycles:	1				
Example:	SLEEP				

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status Affected:	C, DC, Z	Operation: Status	(f) - (W) \rightarrow (dest) C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	000010dfffffffSubtract (2's complement method)W register from register 'f'. If 'd' is 0,the result is stored in the W register.If 'd' is 1, the result is stored head in
Words:	1		register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 $C = ?$		Before Instruction
	After Instruction		REG1= 3
	W = 1		W = 2 C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2 $C = ?$		REG1= 1 W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0 C = 1; result is zero		REG1= 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction REG1= 0
	After Instruction		W = 2
	W = 0xFF	Example 3	C = 1; result is zero Before Instruction
	C – 0, result is negative		REG1= 1 W = 2 C = ?
			After Instruction
			REG1= 0xFF W = 2 C = 0; result is negative

PIC16C62X

FIGURE 12-16: TIMER0 CLOCK TIMING

TABLE 12-6: TIMER0 CLOCK REQUIREMENT

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	—		ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	—	-	ns	
			With Prescaler	10*	—	-	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	-		ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62X

14.0 PACKAGING INFORMATION

18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

	Units		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		18			18		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.170	.183	.195	4.32	4.64	4.95	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.023	.030	0.38	0.57	0.76	
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26	
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49	
Overall Length	D	.880	.900	.920	22.35	22.86	23.37	
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52	
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53	
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80	
Window Width	W1	.130	.140	.150	3.30	3.56	3.81	
Window Length	W2	.190	.200	.210	4.83	5.08	5.33	

* Controlling Parameter
 § Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.