

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

FIGURE 4-6: DATA MEMORY MAP FOR THE PIC16C620A/CR620A/621A

File Address	5		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h	General Purpose Register		A0h
6Fh			
70h	General		F0h
7011	Purpose	Accesses	
7Fh	Register	1011-1711	FFh
	Bank 0	Bank 1	
Unimplemented data memory locations, read as '0'.			
Note 1: Not a physical register.			

FIGURE 4-7: DATA MEMORY MAP FOR THE PIC16C622A

File Address	;		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dn			
1En	014001		9En
1Fn	CMCON	VRCON	9Fn
20h	General	General	A0h
	Purpose	Purpose	
	Register	Register	BFh
			C0h
			0011
6Fh			– F0h
70h	General	Accesses	
	Register	70h-7Fh	EEh
/Fhl	Bank 0	Bank 1	
Unimplemented data memory locations, read as '0'.			
Note 1: Not a physical register.			

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}\,,\;\;{\tt BSF},\; etc.)$ on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings:	PORTB<7:4> Inpu	ıts
;	PORTB<3:0> Outp	puts
; PORTB<7:6> have external ; connected to other circu	. pull-up and are uitry	not
;		
;	PORT latch PO	ORT pins
;		
	-	
BCF PORTB, 7	;01pp pppp 11	ipp pppp
BCF PORTB, 6	;10pp pppp 11	lpp pppp
BSF STATUS, RPO	;	
BCF TRISB, 7	;10pp pppp 11	lpp pppp
BCF TRISB, 6	;10pp pppp 10)pp pppp
;		
; Note that the user may h	ave expected the	pin
; values to be 00pp pppp.	The 2nd BCF cause	ed
; RB7 to be latched as the	e pin value (High)).

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-7). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-7: SUCCESSIVE I/O OPERATION

PIC16C62X

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16C62X devices can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 9-1 and Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Ranges Characterized:			~[]
Mode	Freq	OSC1(C1)	OSC2(C2)
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	82 - 100 pF 15 - 68 pF 15 - 68 pF
HS	8.0 MHz 16.0 MHz 🔨	10-68 bF 10-22 pF	10 - 68 pF 10 - 22 pF
Higher capacitance increases the stability of the oscil- lator but also increases the start-up time. These wabes are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.			

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
хт	100 kHz	68 - 150 pF	150 - 300 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15-30 pF	^V 15 - 30 pF
	10 MHz	15-30 pF	15 - 30 pF
	20 MHz 🔨	15-30 pF	15 - 30 pF
Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.			

9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF
	interrupt flag may not get set.

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.

FIGURE 9-16: INT PIN INTERRUPT TIMING

DECFSZ	Decrement f, Skip if 0		
Syntax:	[label] DECFSZ f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0		
Status Affected:	None		
Encoding:	00 1011 dfff ffff		
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • •		
	After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1		
GOTO	Unconditional Branch		
Syntax:	[<i>label</i>] GOTO k		
Operands:	$0 \leq k \leq 2047$		
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>		
Status Affected:	None		
Encoding:	10 1kkk kkkk kkkk		
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.		
Words:	1		
Cycles:	2		
Example	GOTO THERE		
	After Instruction PC = Address THERE		

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 1010 dfff ffff
Description:	incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	INCF CNT, 1
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1

SWAPF	Swap Ni	bbles in	f		
Syntax:	[label]	SWAPF	f,d		
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)				
Status Affected:	None				
Encoding:	00	1110	dfff	Ē	ffff
Description:	register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.				
Words:	1				
Cycles:	1				
Example	SWAPF	REG,	0		
	Before In	struction			
		REG1	=	0xA5	
	After Inst	ruction			
		REG1 W	= =	0xA5 0x5A	

TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register f;
Status Affected:	None
Encoding:	00 0000 0110 Offf
Description.	code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.
Words:	1
Cycles:	1
Example	
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.

XORLW	Exclusive OR Literal with W								
Syntax:	[<i>label</i> XORLW k]								
Operands:	$0 \le k \le 255$								
Operation:	(W) .XOR. $k \rightarrow (W)$								
Status Affected:	Z								
Encoding:	11 1010 kkkk kkkk								
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Example:	XORLW 0xAF								
	Before Instruction								
	W = 0xB5								
	After Instruction								
	W = 0x1A								
XORWF	Exclusive OR W with f								
Syntax:	[<i>label</i>] XORWF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(W) .XOR. (f) \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 0110 dfff ffff								
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example	XORWF REG 1								
	Before Instruction								
	REG = 0xAF W = 0xB5								
	After Instruction								
	REG = 0x1A W = 0xB5								

11.20 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

11.21 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three micro-controllers are programmed with firmware to provide LIN bus communication.

11.22 PICkit[™] 1 FLASH Starter Kit

A complete "development system in a box", the PICkit FLASH Starter Kit includes a convenient multi-section board for programming, evaluation, and development of 8/14-pin FLASH PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin FLASH PIC[®] Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin FLASH PIC microcontrollers, as well as many future planned devices.

11.23 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

11.24 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62X				dard O ating te dard O ating te	peratii mpera peratir mpera	ng Cond ture -4 -4 ng Cond ture -4	ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and		
	OULA		Opera	ating vo	oltage V	-4 VDD ran	$0^{\circ}C \le TA \le +125^{\circ}C$ for extended ge is the PIC16C62X range.		
Param . No.	Sym	Characteristic	Min Typ† Max Units Conditions						
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM P	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	 	6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 3.0V$		
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	_	300	μA	VDD = 3.0V		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

PIC16C PIC16C	R62XA R62XA	-04 -20	Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended								
PIC16L	CR62X	A-04	Stand Oper	dard O ating te	perati empera	ng Cor ature -	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions				
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-7, 12-8, 12-9				
D001	Vdd	Supply Voltage	2.5	—	5.5	V	See Figures 12-7, 12-8, 12-9				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	—	V	Device in SLEEP mode				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	_	V	Device in SLEEP mode				
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss		V	See section on Power-on Reset for details				
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss		V	See section on Power-on Reset for details				
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details				
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	_	V/ms	See section on Power-on Reset for details				
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared				
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared				
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*				
			_	500	900	μA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)				
			-	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)				
				4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WD1 disabled [*] , HS				
				3.0	0.0 70		Fose = 20 MHz Vpp = 4 5V WDT disabled HS mode				
				55	10	μΛ	Fose = 32 kHz , VDD = 3.0V , WDT disabled, LP mode				
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*				
			-	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)				
			-	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode				

			Stand	Standard Operating Conditions (unless otherwise stated)						
PIC16CR	62XA-	04	Opera	ating te	empera	ature -	40°C	\leq TA \leq +85°C for industrial and		
PIC16CR	62XA-	20					0°C	\leq TA \leq +70°C for commercial and		
						-4	40°C	\leq TA \leq +125°C for extended		
			Stand	dard O	perati	ng Cor	nditio	ns (unless otherwise stated)		
	DESYA	04	Opera	ating te	empera	ature -4	40°C	\leq TA \leq +85°C for industrial and		
FICTULCI		-04					0°C	\leq TA \leq +70°C for commercial and		
							40°C	\leq TA \leq +125°C for extended		
Param.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
No.										

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in k Ω .

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	ard Op	erating Conditions (unless otherwise stated)							
PIC16C	R62XA-(04	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and									
PIC16C	R62XA-2	20	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and									
			$-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended									
			Standard Operating Conditions (unless otherwise stated)									
			Opera	Operating temperature -40° C < Ta < +85°C for industrial and								
PIC16L0	CR62XA	04	opora	ling ton	porat		0° C < TA < +70°C for commercial and					
						-40	1° C < TA < +125°C for extended					
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito						
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions					
NU.	1	(2)			050							
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V					
				0.400	1.0	μΑ						
				0.600	2.2	μΑ	VDD - 5.5V					
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.					
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V					
				200	950	nA A	$VDD = 3.0V^{*}$					
			_	0.600	2.2	μΑ	VDD = 5.5V					
D aga		(5)		5.0	9.0	μΑ						
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V					
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$					
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$					
D023		Comparator Current for each		30	60	μΑ	VDD = 4.0V					
00234		Vere Current ⁽⁵⁾		80	125							
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V					
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)					
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)					
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$					
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V					
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V					
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures					
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X/C6	2XA/CR62XA	Standar Operatir	r d Ope ng temp	rating peratur	Condit re -40° 0° -40°	ions (unless otherwise stated) $C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial and $C \leq TA \leq +125^{\circ}C$ for extended		
PIC16L0	Standaı Operatir	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and -40° C \leq TA \leq +125°C for extended							
Param. No.	Sym	Characteristic	Min Typ† Max Units Conditions						
D040	Vih	Input High Voltage I/O ports with TTL buffer	2.0V	_	1/22	V	VDD = 4.5V to 5.5V		
D041		with Schmitt Trigger input	0.25 VDD + 0.8V		VDD VDD		otherwise		
D041			0.8 VDD	_	VDD	v			
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	VDD	V	(Note 1)		
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS		
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance		
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance		
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1, MCLR			±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	lı∟	Input Leakage Current ^(2, 3)							
					±1.0	μΑ	$Vss \leq V PIN \leq V DD, \ pin \ at \ hi\text{-impedance}$		
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance		
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1, MCLR	-		±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Vol	Output Low Voltage							
D080		I/O ports	—	—	0.6	V	$IOL = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$		
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	$IOL = 1.6 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$		
			_	—	0.6	V	Iol = 1.2 mA, VDD = 4.5V, +125°C		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	DC CHARACTERISTICS				Oper ation	ating (erature	Conditions (unless otherwise stated) e $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	3.0		5.5	V	Fosc = DC to 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss		V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *			V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode. (Note 4)
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode. (Note 6)
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled,
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*,
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode
D020	IPD	Power Down Current ⁽³⁾		_	2.2	μA	VDD = 3.0V
			—	—	5.0	μA	VDD = 4.5V*
			—	—	9.0	μA	$V_{DD} = 5.5V$
D 000			_	_	15	μΑ	
D022	AIWDI	WD1 Current ^(*)		6.0	10	μΑ	VDD = 4.0V (125°C)
D022A	AIBOR	Brown-out Reset Current ⁽⁵⁾	_	75	125	μΑ	$\frac{(123)}{123}$ Of BOD enabled, VDD = 5.0V
D023		Comparator Current for each Comparator ⁽⁵⁾	—	30	60	μA	VDD = 4.0V
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V
	Δ IEE Write	Operating Current	_		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA	
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE VDD = Vcc
	ΔIEE	Standby Current	—		100	μA	VCC = 3.0V, EE VDD = VCC
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		XC Oscillator Operating Frequency	0	—	4	IVIHZ M⊔⊸	
		HS Oscillator Operating Frequency	0		- - 20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP

mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
For RC OSC configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

PIC16C62X

FIGURE 12-16: TIMER0 CLOCK TIMING

TABLE 12-6: TIMER0 CLOCK REQUIREMENT

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	—		ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	—	-	ns	
			With Prescaler	10*	—	-	ns	
42	Tt0P	T0CKI Period		$\frac{\text{TCY} + 40}{\text{N}}^*$	—		ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62X

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units		INCHES*		Ν	3	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	
Brown-Out Detect (BOD)	50
BSF Instruction	64
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	
Code Protection	60

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	66
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	41
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	

D

Data Memory Organization
DC Characteristics
PIC16C717/770/771
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus78
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet
Development Support75
E
Errata3
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

I

I/O Ports	25
I/O Programming Considerations	30
ID Locations	60
INCEST Instruction	67 60
In-Circuit Serial Programming	60 60
Indirect Addressing, INDF and FSR Registers	24
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	63
	63
	63 63
BCF	64
BSF	64
BTFSC	64
BTFSS	65
CALL	65
CLRF	65
	00 66
COME	66 66
DECF	66
DECFSZ	67
GOTO	67
INCF	67
INCFSZ	68
IORLW	68
	68
	69 69
	00 60
NOP	69 69
OPTION	69
RETFIE	70
RETLW	70
RETURN	70
RLF	71
RRF	71
SLEEP	71 72
SUBWE	1 Z 72
SWAPF	73
TRIS	73
XORLW	73
XORWF	73
Instruction Set Summary	61
INT Interrupt	56
INICON Register	20
Interrupts	55 68
IORWE Instruction	68
M	00
IVI	~~
MOVE Instruction	69 60
MOV/WE Instruction	00 69
MPLAB ASM30 Assembler, Linker, Librarian	76
MPLAB ICD 2 In-Circuit Debugger	77
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	77
MPLAB ICE 4000 High Performance Universal	
In-Circuit Emulator	77
MPLAB Integrated Development Environment Software	75 76
INIPLINK ODJECT LINKER/INIPLIB ODJECT LIDRARIAN	10