

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620a-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	. 5
2.0	PIC16C62X Device Varieties	. 7
	Architectural Overview	
	Memory Organization	
5.0	I/O Ports	25
6.0	Timer0 Module	31
7.0	Comparator Module	37
8.0	Voltage Reference Module	43
9.0	Special Features of the CPU	45
10.0	Instruction Set Summary	61
	Development Support	
12.0	Electrical Specifications	81
13.0	Device Characterization Information	09
14.0	Packaging Information 1	13
	Jix A: Enhancements 1	
Append	Jix B: Compatibility	19
Index		21
On-Line	e Support 1	23
System	Is Information and Upgrade Hot Line	23
	Response 1	
Product	t Identification System 1	25

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

File			File
Address	3		Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h		_	A0h
	General		
	Purpose Register		
6Fh	5		
70h			
7Fh			FFh
	Bank 0	Bank 1	
—		1 4	
Unimp	plemented data me	mory locations, r	ead as '0'.
Note 1:	Not a physical re	egister.	

FIGURE 4-5:

DATA MEMORY MAP FOR THE PIC16C622

	1116		
File Address	8		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
00h	TOILID	TRIOD	87h
07h 08h			88h
00h			89h
03h 0Ah	PCLATH	PCLATH	8Ah
0An 0Bh	INTCON	INTCON	8Bh
0Dh	PIR1	PIE1	8Ch
0Ch 0Dh	PIRI	PIEI	8Dh
		PCON	
0Eh 0Fh		PCON	8Eh
			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h			A0h
	General Purpose	General Purpose	
	Register	Register	
	0	5	BFh
			C0h
7Fh			FFh
, , , , , ,	Bank 0	Bank 1	
Unim	plemented data me	mory locations, re	ad as '0'.
Note 1:	Not a physical re	aister	

FIGURE 4-6: DATA MEMORY MAP FOR THE PIC16C620A/CR620A/621A

	11010002		- 17 (
File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h	General Purpose Register		A0h
6Fh			
70h	General		F0h
	Purpose Register	Accesses 70h-7Fh	
7Fh	Bank 0	Bank 1	」 FFh
Unimp	lemented data mer	mory locations, rea	ad as '0'.
Note 1:	Not a physical re	gister.	

FIGURE 4-7: DATA MEMORY MAP FOR THE PIC16C622A

		C10C022A				
File Address	3		File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h			87h			
08h			88h			
09h			89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	PIR1	PIE1	8Ch			
0Dh			8Dh			
0Eh		PCON	8Eh			
0Fh			8Fh			
10h			90h			
11h			91h			
12h			92h			
13h			93h			
14h			94h			
15h			95h			
16h			96h			
17h			97h			
18h			98h			
19h			99h			
1Ah			9Ah			
1Bh			9Bh			
1Ch			9Ch			
1Dh			9Dh			
1Eh			9Eh			
1Fh	CMCON	VRCON	9Fh			
20h			A0h			
	General	General	Aon			
	Purpose Register	Purpose Register				
	rtegister	rtegister	BFh			
			C0h			
0.51						
6Fh	0		F0h			
70h	General Purpose	Accesses				
754	Register	70h-7Fh	FFh			
7Fh	Bank 0	Bank 1	→ FF11			
Unimp	plemented data me	mory locations, re	ad as '0'.			
Note 1: Not a physical register.						

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The Special Function Registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	g this locati	ion uses co	ntents of FS	SR to addre	ess data me	mory (not a	n physical	XXXX XXXX	XXXX XXXX
01h	TMR0	Timer0 Mo	odule's Reg	ister						xxxx xxxx	uuuu uuuu
02h	PCL	Program 0	Counter's (F	PC) Least S	ignificant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
05h	PORTA	—	_	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h-09h	Unimplemented									_	_
0Ah	PCLATH	_	_	—	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	CMIF	—	_	—	_	—	—	-0	-0
0Dh-1Eh	Unimplemented									_	_
1Fh	CMCON	C2OUT	C1OUT	—	_	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	g this locati	on uses co	ntents of FS	SR to addre	ess data me	mory (not a	ı physical	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program 0	Counter's (F	PC) Least S	ignificant B	yte				0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
85h	TRISA	—	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h-89h	Unimplemented									_	_
8Ah	PCLATH	—	_	_	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	CMIE	—	—	—	—	—	—	-0	-0
8Dh	Unimplemented									_	_
8Eh	PCON	—		_		_		POR	BOR	0x	uq
8Fh-9Eh	Unimplemented									_	_
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown,

 ${\rm q}$ = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

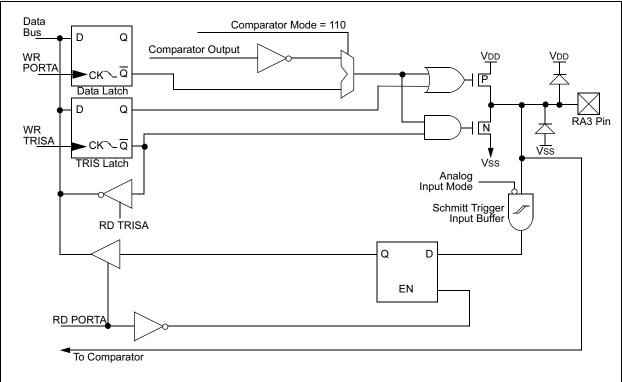
2: IRP & RP1 bits are reserved; always maintain these bits clear.

4.2.2.1 STATUS Register

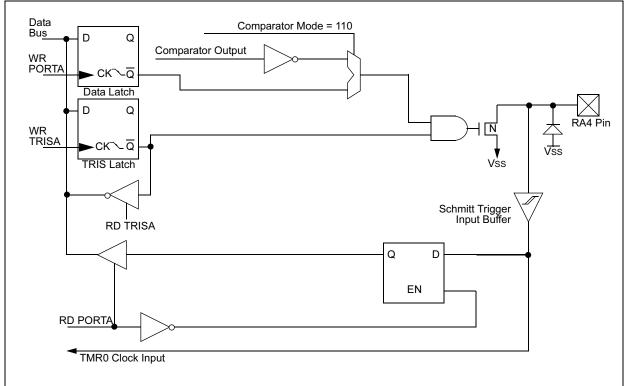
The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).


It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.


REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
	IRP	RP1	RP0	TO	PD	Z	DC	С	
	bit 7							bit 0	
bit 7	-	ter Bank Sel	-	d for indirect	addressing)			
		, 3 (100h - 1 , 1 (00h - FF							
		t is reserved		16C62X; alv	/ays maintai	n this bit cle	ar.		
bit 6-5		Register Ban			-				
		1 (80h - FFh							
		0 (00h - 7Fh							
	Each bank clear.	is 128 bytes	5. The RP1 t	oit is reserve	ed on the PIC	C16C62X; a	lways mainta	ain this bit	
bit 4	TO: Time-c	out bit							
		ower-up, CLI	RWDT instruc	ction. or SLE	EP instruction	on			
		time-out oc		,					
bit 3	PD: Power	-down bit							
	-	ower-up or b cution of the	-		n				
bit 2	Z: Zero bit								
		sult of an arit sult of an arit)			
bit 1				• •)(for borrow	the polarity	
	DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(for borrow the polarity is reversed)								
		-out from the				rred			
		ry-out from th							
bit 0	•	orrow bit (AD							
	•	-out from the ry-out from th	-						
	Note:	For borrow t	he polarity i	s reversed.	A subtraction	on is execut	ed by addin	g the two's	
		complement						s, this bit is	
		loaded with e	either the hig	gh or low or	der bit of the	source reg	ister.		
	Legend:	L. L. 14					hit on all	0	
	R = Reada			ritable bit		•	bit, read as		
	- n = Value	at POR	1′ = Bi	it is set	'0' = Bit i	scleared	x = Bit is u	nknown	

TABLE 5-1:PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input
RA1/AN1	bit1	ST	Input/output or comparator input
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output
RA3/AN3	bit3	ST	Input/output or comparator input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.

Legend: ST = Schmitt Trigger input

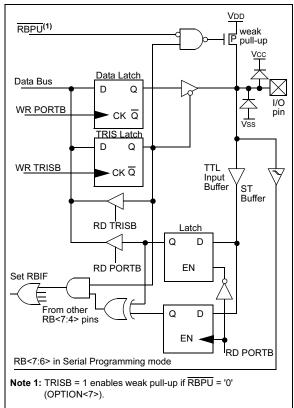
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA				RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA			_	TRISA 4	TRISA 3	TRISA 2	TRISA 1	TRISA 0	1 1111	1 1111
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by PORTA.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a High Impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

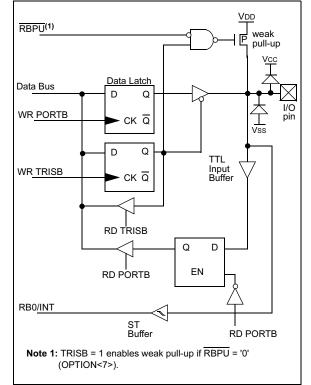
Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A \ typical$). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (e.g., any RB<7:4> pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

FIGURE 5-5: BLOCK DIAGRAM OF RB<7:4> PINS

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552, "Implementing Wake-Up on Key Strokes.)

Note:	If a change on the I/O pin should occur		
	when the read operation is being executed		
	(start of the Q2 cycle), then the RBIF inter-		
	rupt flag may not get set.		

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

TABLE 7-1 :	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
--------------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT		_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	CMIF	_	_	_	_	_	_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0
85h	TRISA				TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

-

TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	000x xuuu	u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	MCLR Reset during <u>normal</u> operation MCLR Reset during SLEEP WDT Reset Brown-out Reset ⁽¹⁾	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	นนนน นนนน	นนนน นนนน
INDF	00h		_	_
TMR0	01h	xxxx xxxx	սսսս սսսս	นนนน นนนน
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	<u>uuuu</u> uuuu
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	xxxx xxxx	սսսս սսսս	սսսս սսսս
CMCON	1Fh	00 0000	00 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	-0	-0	-q ^(2,5)
OPTION	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	-0	-0	-u
PCON	8Eh	0x	uq ^(1,6)	uu
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu

TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

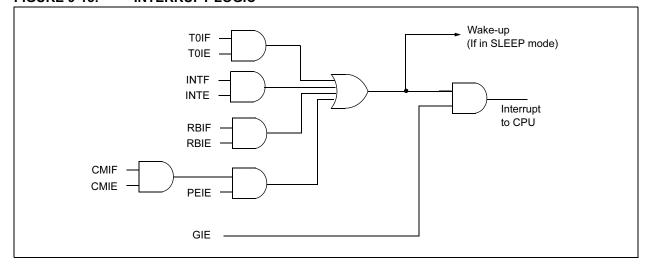

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

TABLE 10-2: PIC16C62X INSTRUCTION SET

Mnemonic	,	Description		14-Bit Opcode				Status	Notes	
Operands				MSb)	LSb		Affected		
BYTE-ORI	IENTED I	FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0000	0011	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIEN	NTED FIL	E REGISTER OPERATIONS								
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL /	AND COI	NTROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$
	0 ≤ b < 7	Operation:	(PC) + 1 \rightarrow TOS,
Operation:	skip if (f) = 1		$k \rightarrow PC < 10:0>$, (PCLATH<4:3>) $\rightarrow PC < 12:11>$
Status Affected:	None	Status Affected:	None
Encoding:	01 11bb bfff ffff	Encoding:	10 0kkk kkkk kkkk
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped.	Description:	Call Subroutine. First, return
	If bit 'b' is '1', then the next instruc-	Decomption	address (PC+1) is pushed onto
	tion fetched during the current		the stack. The eleven bit immedi-
	instruction execution, is discarded and a NOP is executed instead.		ate address is loaded into PC bits <10:0>. The upper bits of the PC
	making this a two-cycle instruction.		are loaded from PCLATH. CALL is
Words:	1		a two-cycle instruction.
Cycles:	1(2)	Words:	1
Example	here bifss FLAG,1	Cycles:	2
	FALSE GOTO PROCESS_CO TRUE • DE	Example	HERE CALL THER
	·		E
	• Defens lastruction		Before Instruction
	Before Instruction PC = address HERE		PC = Address HERE After Instruction
	After Instruction		PC = Address THERE
	if FLAG<1> = 0, PC = address FALSE		TOS = Address HERE+1
	if FLAG<1> = 1,		
	PC = address TRUE	CLRF	Clear f
		Syntax:	[label] CLRF f
		Operands:	$0 \leq f \leq 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
		Status Affected:	Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF FLAG_REG
		•	Before Instruction
			FLAG_REG = 0x5A
			After Instruction FLAG REG = 0x00
			Z = 1

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †

Ambient Temperature under bias	40° to +125°C
Storage Temperature	65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.6V to VDD +0.6V
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	
Total power Dissipation (Note 1)	1.0W
Maximum Current out of Vss pin	300 mA
Maximum Current into VDD pin	250 mA
Input Clamp Current, Iк (Vi <0 or Vi> VDD)	±20 mA
Output Clamp Current, Iок (Vo <0 or Vo>VoD)	±20 mA
Maximum Output Current sunk by any I/O pin	25 mA
Maximum Output Current sourced by any I/O pin	25 mA
Maximum Current sunk by PORTA and PORTB	200 mA
Maximum Current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	x IOH} + Σ (VOI x IOL).

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA PIC16LC62XA				ating te dard O ating te	perati	ature -4 -4 ng Con ature -4 -4	ditions (unless otherwise stated) 40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and 40° C $\leq TA \leq +125^{\circ}$ C for extended ditions (unless otherwise stated) 40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and 0° C $\leq TA \leq +125^{\circ}$ C for extended
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D010	IDD	Supply Current ^(2, 4)	_	1.2 0.4 1.0	2.0 1.2 2.0	mA mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)* Fosc = 10 MHz, VDD = 3.0V, WDT dis-
			_	4.0	6.0 7.0	mA mA	abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis- abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis-
			_	35	70	μA	abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled, LP mode
D010	IDD	Supply Current ⁽²⁾	_	1.2 — 35	2.0 1.1 70	mA mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT dis-
D020	IPD	Power-down Current ⁽³⁾			2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.
D020	IPD	Power-down Current ⁽³⁾		 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C62X/C62XA/CR62XA				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq Ta \leq +85^{\circ}$ C for industrial and 0° C $\leq Ta \leq +70^{\circ}$ C for commercial and -40° C $\leq Ta \leq +70^{\circ}$ C for commercial and -40° C $\leq Ta \leq +125^{\circ}$ C for extended						
PIC16LC62X/LC62XA/LCR62XA				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
	Vol	Output Low Voltage								
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C			
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C			
D083		OSC2/CLKOUT (RC only)	_	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C			
			_	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C			
	Voн	Output High Voltage ⁽³⁾	1							
D090		I/O ports (Except RA4)	Vdd-0.7	_	_	v	ІОН = -3.0 mA, VDD = 4.5V, -40° to +85°С			
			VDD-0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, +125°С			
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°С			
			VDD-0.7	_	_	V	Iон = -1.0 mA, VDD = 4.5V, +125°С			
	Vон	Output High Voltage ⁽³⁾								
D090		I/O ports (Except RA4)	VDD-0.7	—	-	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C			
			VDD-0.7	—	-	V	ЮН = -2.5 mA, VDD = 4.5V, +125°С			
D092		OSC2/CLKOUT (RC only)	VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C			
*D450	1/22	On an Duain Llink) (alta na	VDD-0.7	_		V V	IOH = -1.0 mA, VDD = 4.5V, +125°C			
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA			
D150	Vod	Open-Drain High Voltage			10 8.5*	V	RA4 pin PIC16C62X, PIC16LC62X RA4 pin PIC16C62XA, PIC16LC62XA, PIC16CR62XA, PIC16LCR62XA			
		Capacitive Loading Specs on Output Pins								
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF				
		Capacitive Loading Specs on Output Pins								
D100	COSC 2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

*

PIC16C62X

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)
Р
Package Marking Information117
Packaging Information113
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register21
Port RB Interrupt
PORTA25
PORTB
Power Control/Status Register (PCON)51
Power-Down Mode (SLEEP)
Power-On Reset (POR)
Power-up Timer (PWRT)50
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices7
R
RC Oscillator
Reset
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

S

Serialized Quick-Turnaround-Production (SQTP) Devices 7	7
SLEEP Instruction71	1
Software Simulator (MPLAB SIM)76	
Software Simulator (MPLAB SIM30)76	6
Special Features of the CPU45	5
Special Function Registers17	7
Stack	3
Status Register18	3
SUBLW Instruction72	2
SUBWF Instruction72	2
SWAPF Instruction	3

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	
Timing Diagrams and Specifications	104
TMR0 Interrupt	56
TRIS Instruction	73
TRISA	25
TRISB	

V

Voltage Reference Module VRCON Register	
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	. 73

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

DeviceFrequency RangeTemperature RangePackageDevicePIC16C62X: VDD range 3.0V to 6.0V PIC16C62XAT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 6.0V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XA: VDD range 2.5V to 5.5V PIC16LC62XAT: VDD range 2.5V to 5.5V PIC16LC620AT: VDD range 2.0V to 5.5V <th>PART NO.</th> <th><u>-xx</u></th> <th>¥</th> <th><u>/xx</u></th> <th>xxx</th> <th>Ex</th> <th>amples:</th>	PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	Ex	amples:				
PIC16C62XT: VDD range 3.0V to 6.0V PIC16C62XA: VDD range 3.0V to 5.5V PIC16C62XA: VDD range 3.0V to 5.5V PIC16LC62XA: VDD range 2.5V to 6.0V 	Device			Package	Pattern	a)	PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.				
$\begin{array}{rcl} 04 & 4 \text{ MHz} (XT \text{ and } \text{RC osc}) \\ 20 & 20 \text{ MHz} (\text{HS osc}) \\ \end{array}$ Temperature Range - = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Device	PIC16C62 PIC16C62 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16LC6 PIC16CR PIC16CR PIC16CR	2XT: VDD range 3.0 2XA: VDD range 3.0 2XAT: VDD range 3.6 22XT: VDD range 2.5 32XT: VDD range 2.5 32XA: VDD range 2 52XA: VDD range 2 620A: VDD range 2 620A: VDD range R620A: VDD range	W to 6.0V (Tap OV to 5.5V .0V to 5.5V (Ta 5V to 6.0V .5V to 6.0V (Ta .5V to 5.5V .5V to 5.5V 2.5V to 5.5V	pe and Reel) pe and Reel) ape and Reel) ape and Reel)) b)	•				
Package P = PDIP SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Frequency Rang	04 4 MH	Iz (XT and RC osc	;)							
SO = SOIC (Gull Wing, 300 mil bo SS = SSOP (209 mil)	Temperature Rar	= -	-40°C to +85°C								
	Package	SO = SS =	SOIC (Gull Wing, SSOP (209 mil)	• •							
Pattern 3-Digit Pattern Code for QTP (blank oth	Pattern	3-Digit Pa	ttern Code for QTF	O (blank otherward)	<i>r</i> ise)						

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.