

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	96 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620a-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM. The Special Function Registers can be classified into two sets (core and peripheral). The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
Bank 0											
00h	INDF	Addressin register)	ig this locat	a physical	XXXX XXXX	XXXX XXXX					
01h	TMR0	Timer0 Mo	odule's Reg	ister		xxxx xxxx	uuuu uuuu				
02h	PCL	Program (Counter's (F	PC) Least S	Significant B	yte				0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h-09h	Unimplemented									_	_
0Ah	PCLATH	—	—	—	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
0Dh-1Eh	Unimplemented									_	_
1Fh	CMCON	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressin register)	Addressing this location uses contents of FSR to address data memory (not a physical register)							xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program (Counter's (F	PC) Least S	ignificant B	yte				0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect da	ata memory	address po	ointer					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h-89h	Unimplemented									_	_
8Ah	PCLATH	-	-	—	Write buffe	er for upper	5 bits of pr	ogram coui	nter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	CMIE	—	—	—	—	—	—	-0	-0
8Dh	Unimplemented									_	_
8Eh	PCON	_	_	_	_	—	—	POR	BOR	0x	uq
8Fh-9Eh	Unimplemented						-		-	_	_
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C62X

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown,

 ${\rm q}$ = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

2: IRP & RP1 bits are reserved; always maintain these bits clear.

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

REGISTER 4-2:	OPTION REGISTER (ADDRESS 81H)
---------------	-------------------------------

RBPU INTEDG TOCS TOSE bit 7 bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	PSA t latch va DCKI pin DCKI pin	PS2	PS1	PS0 bit 0
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3	t latch va DCKI pin DCKI pin	alues		bit 0
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	t latch va DCKI pin DCKI pin	alues		
bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 T0CS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	rt latch va DCKI pin DCKI pin	alues		
1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual por bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	t latch va DCKI pin DCKI pin	alues		
 bit 6 INTEDG: Interrupt Edge Select bit Interrupt on rising edge of RB0/INT pin Interrupt on falling edge of RB0/INT pin Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit Transition on RA4/T0CKI pin Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit Increment on high-to-low transition on RA4/T0 Increment on low-to-high transition on RA4/T0 bit 3)CKI pin)CKI pin	alues		
bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit	DCKI pin DCKI pin			
1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 T0CS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
 bit 5 TOCS: TMR0 Clock Source Select bit Transition on RA4/T0CKI pin Transition on RA4/T0CKI pin Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit Increment on high-to-low transition on RA4/T0 Increment on low-to-high transition on RA4/T0 bit 3)CKI pin)CKI pin			
bit 5 TOCS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit)CKI pin)CKI pin			
 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit)CKI pin)CKI pin			
bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA: Prescaler Assignment bit)CKI pin)CKI pin			
1 = Increment on high-to-low transition on RA4/T0 0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit	CKI pin CKI pin			
0 = Increment on low-to-high transition on RA4/T0 bit 3 PSA : Prescaler Assignment bit	OCKI pin			
bit 3 PSA : Prescaler Assignment bit				
1 = Prescaler is assigned to the WDT				
0 = Prescaler is assigned to the Timer0 module				
bit 2-0 PS<2:0> : Prescaler Rate Select bits				
Bit Value TMR0 Rate WDT Rate				
000 1:2 1:1				
001 1:4 1:2				
101 1:64 1:32				
110 1:128 1:64				
111 1:256 1:128				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF				
	bit 7			<u>.</u>		<u>.</u>		bit 0				
bit 7	GIE: Globa	I Interrupt E	nable bit									
	1 = Enables	s all un-mas	sked interrup	ots								
1.11.0		s all interru	pts									
0 110	PEIE: Perip		upt Enable i	DIT 	-							
	1 = Enables 0 = Disable	s all un-mas	sked periphe eral interrun	eral interrupt	S							
bit 5		0 Overflow	Interrunt En	able bit								
bit o	1 = Enables	s the TMR0	interrupt									
	0 = Disable	0 = Disables the TMR0 interrupt										
bit 4	INTE: RB0/	INT Externa	al Interrupt E	Enable bit								
	1 = Enables	s the RB0/I	NT external	interrupt								
	0 = Disable	s the RB0/I	NT external	interrupt								
bit 3	RBIE: RB F	ort Change	Interrupt E	nable bit								
	1 = Enables	s the RB po	rt change in	iterrupt								
L:4 0			oft change in	iterrupi								
DIL ∠		J OVernow i		g Dit	- ared in coff	+						
	1 = TMR0 r 0 = TMR0 r	register did	not overflow	(ที่มีประ มีฮ มีฮ /	aleu ili son	ware						
bit 1	INTF: RB0/	INT Externa	al Interrupt F	-lag bit								
	1 = The RB	30/INT exter	nal interrup	t occurred (n	nust be clea	ared in softwa	are)					
	0 = The RB	30/INT exter	nal interrupt	t did not occ	ur							
bit 0	RBIF : RB F	ort Change	Interrupt Fl	lag bit								
	1 = When a	at least one	of the RB<7	':4> pins cha	anged state	(must be cle	ared in soft	ware)				
	0 = None o	f the RB<1	4> pins nave	e changea s	tate							
	Larandi											
	Legend:											

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)	

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to WDT.)

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

	-	
1.BCF	STATUS, RPO	;Skip if already in ;Bank 0
2.CLRWDT		;Clear WDT
3.CLRF	TMR0	;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b;	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	;are required only if ;desired PS<2:0> are
7.CLRWDT		;000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	;desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2:

CHANGING PRESCALER (WDT→TIMER0)

	•	
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		prescale value and
		, plock gourgo
		,CIOCK SOULCE
MOVWF	OPTION REG	
BCF	STATUS, RPO	

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0	module regi	ister						XXXX XXXX	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by TMR0 module.

7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

	R-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT	—	—	CIS	CM2	CM1	CM0
	bit 7							bit 0
bit 7	C2OUT : Co 1 = C2 VIN 0 = C2 VIN	omparator 2 + > C2 VIN- + < C2 VIN-	output					
bit 6	C1OUT : Co 1 = C1 VIN 0 = C1 VIN	omparator 1 + > C1 VIN- + < C1 VIN-	output					
bit 5-4	Unimplem	ented: Read	d as '0'					
bit 3	CIS: Comp When CM< 1 = C1 VIN- 0 = C1 VIN- When CM< 1 = C1 VIN- C2 VIN 0 = C1 VIN- C2 VIN	arator Input :2:0>: = 001 - connects to :2:0> = 010: - connects to - connects to - connects to - connects to - connects to	Switch : o RA3 o RA0 o RA3 o RA2 o RA0 o RA1					
bit 2-0	CM<2:0>: (Comparator	mode.					
	Logondi							

L	.egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.3 RESET

The PIC16C62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOR)

Some registers are not affected in any RESET condition Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset,

MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 9-2. These bits are used in software to determine the nature of the RESET. See Table 9-5 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 9-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-5 for pulse width specification.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

10.0 INSTRUCTION SET SUMMARY

Each PIC16C62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C62X instruction set summary in Table 10-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLAT H	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 10-1 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

Figure 10-1 shows the three general formats that the instructions can have.

Note:	To maintain upward compatibility with	1
	future PICmicro® products, do not use the	;
	OPTION and TRIS instructions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 10-2: PIC16C62X INSTRUCTION S

Mnemonic,		Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED I	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND COI	NTROL OPERATIONS	-					-	
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C62X

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f			
Syntax:	[label] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)			
Status Affected:	None	Status Affected:	Z			
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
	If the result is 0, the next instruc-	Words:	1			
	discarded. A NOP is executed	Cycles:	1			
	instead making it a two-cycle	Example	IORWF RESULT, 0			
	Instruction.		Before Instruction			
vvoras:	1		$\begin{array}{rcl} RESULI &= & 0x13 \\ W &= & 0x91 \end{array}$			
Cycles: Example	1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		After Instruction $\begin{array}{rcl} RESULT &= & 0x13 \\ W & = & 0x93 \\ Z & = & 1 \end{array}$			
	Before Instruction	MOVLW	Move Literal to W			
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k			
	CNT = CNT + 1	Operands:	$0 \le k \le 255$			
	if $CNT = 0$, PC = address CONTINUE	Operation:	$k \rightarrow (W)$			
	if $CNT \neq 0$,	Status Affected:	None			
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk			
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.			
Syntax:	[<i>label</i>] IORLW k	Words:	1			
Operands:	$0 \le k \le 255$	Cycles:	1			
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A			
Status Affected:	Z	·	After Instruction			
Encoding:	11 1000 kkkk kkkk		W = 0x5A			
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	IORLW 0x35					
	Before Instruction W = 0x9A					
	After Instruction					

W = Z =

0xBF 1

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C	62XA		Stan Oper	dard O ating te	perati empera	ng Con ature -4 -4	ditions (unless otherwise stated) $40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended			
PIC16LC62XA				Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D001	Vdd	Supply Voltage	3.0	-	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	_	V	Device in SLEEP mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	_	V	See section on Power-on Reset for details			
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss	_	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	-	V/ms	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Standard Operating Conditions (unless otherwise stated)									
PIC16C	R62XA-(04	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and									
PIC16C	R62XA-2	20	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and									
						-4	$0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
				Standard Operating Conditions (unless otherwise stated)								
			Opera	Onerating temperature -40° C $<$ Ta $< +85^{\circ}$ C for industrial and								
PIC16L0	CR62XA	04	opora	ling ton	porat		0° C < TA < +70°C for commercial and					
						-40	1° C < TA < +125°C for extended					
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito						
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions					
NU.	1	(2)			050							
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V					
				0.400	1.0	μΑ						
				0.600	2.2	μΑ	VDD - 5.5V					
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.					
D020	IPD	Power-down Current ⁽³⁾	_	200	850	nA	VDD = 2.5V					
				200	950	nA A	$VDD = 3.0V^{*}$					
				0.600	2.2	μΑ	VDD = 5.5V					
D aga		(5)		5.0	9.0	μΑ						
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V					
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$					
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$					
D023		Comparator Current for each		30	60	μA	VDD = 4.0V					
00234		Vere Current ⁽⁵⁾		80	125							
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V					
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)					
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)					
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$					
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V					
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V					
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures					
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

PIC16C	Standar Operatir	r d Ope ng temp	rating peratur	Condit re -40° 0° -40°	ions (unless otherwise stated) $C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial and $C \leq TA \leq +125^{\circ}C$ for extended		
PIC16LC62X/LC62XA/LCR62XA			Standaı Operatir	r d Ope ng tem	rating peratu	Condit re -40° 0° -40°	$\begin{array}{ll} \mbox{ions (unless otherwise stated)} \\ C &\leq TA \leq +85^\circ C \mbox{ for industrial and} \\ C &\leq TA \leq +70^\circ C \mbox{ for commercial and} \\ C &\leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D040	Vih	Input High Voltage I/O ports with TTL buffer	2.0V	_	1/22	V	VDD = 4.5V to 5.5V
D041		with Schmitt Trigger input	0.25 VDD + 0.8V		VDD VDD		otherwise
D041			0.8 VDD	_	VDD	v	
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	VDD	V	(Note 1)
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ^(2, 3) I/O ports (Except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI	_	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR			±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	lı∟	Input Leakage Current ^(2, 3)					
					±1.0	μΑ	$Vss \leq V PIN \leq V DD, \ pin \ at \ hi\text{-impedance}$
D060		PORTA	—	—	±0.5	μA	$Vss \le VPIN \le VDD$, pin at hi-impedance
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1, MCLR	-		±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	$IOL = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	$IOL = 1.6 \text{ mA}, \text{ VDD} = 4.5 \text{V}, -40^{\circ} \text{ to } +85^{\circ}\text{C}$
			_	—	0.6	V	Iol = 1.2 mA, VDD = 4.5V, +125°C

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC [.]	TERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions		
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	—	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise		
D031		with Schmitt Trigger input	Vss		0.2VDD	V			
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)		
D033		OSC1 (in XT and HS)	Vss	—	0.3VDD	V			
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V			
	Vih	Input High Voltage							
		I/O ports							
D040		with TTL buffer	2.0V	—	VDD	V	VDD = 4.5V to 5.5V, otherwise		
D044		with Ochavitt Triansations t	0.25 VDD + 0.8		VDD				
D041					VDD				
D042		MCLR RA4/TUCKI		_	VDD	V			
D043		OSC1 (A1, HS and LP) OSC1 (in RC mode)		_	VDD	v	(Note 1)		
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μА	$V_{DD} = 5.0V$. VPIN = Vss		
	liL	Input Leakage Current ^(2, 3)							
		I/O ports (except PORTA)			±1.0	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance		
D060		PORTA	_	_	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance		
D061		RA4/T0CKI	—	—	±1.0	μA	$Vss \le VPIN \le VDD$		
D063		OSC1, MCLR	_	—	±5.0	μA	$Vss \leq VPIN \leq VDD,$ XT, HS and LP osc configuration		
	Vol	Output Low Voltage							
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C		
			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C		
D083		OSC2/CLKOUT (RC only)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C		
		(2)	_		0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C		
	Vон	Output High Voltage ⁽³⁾							
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C		
			VDD-0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, +125°C		
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C		
*0450	1/25	On an Duain Ulink Matterna	VDD-0.7	_		V	IOH = -1.0 mA, VDD = 4.5V, +125°C		
"D150	VOD	Open Drain High Voltage			8.5	V	RA4 pin		
		Capacitive Loading Specs on							
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1		
D101	Сю	All I/O pins/OSC2 (in RC mode)			50	pF			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

 mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
 For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

INDEX

Α	
ADDLW Instruction	63
ADDWF Instruction	63
ANDLW Instruction	63
ANDWF Instruction	63
Architectural Overview	9
Assembler	
MPASM Assembler	75
В	

8	
BCF Instruction	64
Block Diagram	
TIMER0	
TMR0/WDT PRESCALER	34
Brown-Out Detect (BOD)	50
BSF Instruction	64
BTFSC Instruction	64
BTFSS Instruction	65
С	
C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	66
CLRWDT Instruction	
Code Brotestian	60

C Compilers	
MPLAB C17	76
MPLAB C18	76
MPLAB C30	76
CALL Instruction	65
Clocking Scheme/Instruction Cycle	12
CLRF Instruction	65
CLRW Instruction	
CLRWDT Instruction	66
Code Protection	60
COMF Instruction	
Comparator Configuration	
Comparator Interrupts	41
Comparator Module	
Comparator Operation	
Comparator Reference	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	

D

Data Memory Organization
DC Characteristics
PIC16C717/770/771
DECF Instruction
DECFSZ Instruction
Demonstration Boards
PICDEM 1
PICDEM 17
PICDEM 18R PIC18C601/80179
PICDEM 2 Plus78
PICDEM 3 PIC16C92X
PICDEM 4
PICDEM LIN PIC16C43X79
PICDEM USB PIC16C7X579
PICDEM.net Internet/Ethernet78
Development Support75
E
Errata3
Evaluation and Programming Tools
External Crystal Oscillator Circuit
G
General purpose Register File
GOTO Instruction

I

I/O Ports	25
I/O Programming Considerations	30
ID Locations	60
INCEST Instruction	67 60
In-Circuit Serial Programming	60 60
Indirect Addressing, INDF and FSR Registers	24
Instruction Flow/Pipelining	12
Instruction Set	
ADDLW	63
	63
	63 63
BCF	64
BSF	64
BTFSC	64
BTFSS	65
CALL	65
CLRF	65
	00 66
COME	66 66
DECF	66
DECFSZ	67
GOTO	67
INCF	67
INCFSZ	68
IORLW	68
	68
	69 69
	00 60
NOP	69 69
OPTION	69
RETFIE	70
RETLW	70
RETURN	70
RLF	71
RRF	71
SLEEP	71 72
SUBWE	1 Z 72
SWAPF	73
TRIS	73
XORLW	73
XORWF	73
Instruction Set Summary	61
INT Interrupt	56
INICON Register	20
Interrupts	55 68
IORWE Instruction	68
M	00
IVI	~~
MOVE Instruction	69 60
MOV/WE Instruction	00 69
MPLAB ASM30 Assembler, Linker, Librarian	76
MPLAB ICD 2 In-Circuit Debugger	77
MPLAB ICE 2000 High Performance Universal	
In-Circuit Emulator	77
MPLAB ICE 4000 High Performance Universal	
In-Circuit Emulator	77
MPLAB Integrated Development Environment Software	75 76
INIPLINK ODJECT LINKER/INIPLIB ODJECT LIDRARIAN	10