

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 4MHz                                                                         |
| Connectivity               | -                                                                            |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                             |
| Number of I/O              | 13                                                                           |
| Program Memory Size        | 896B (512 x 14)                                                              |
| Program Memory Type        | ОТР                                                                          |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 96 x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | External                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                               |
| Supplier Device Package    | 20-SSOP                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620a-04i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|             |                                         | PIC16C620 <sup>(3)</sup>            | PIC16C620A <sup>(1)(4)</sup>        | PIC16CR620A <sup>(2)</sup>          | PIC16C621 <sup>(3)</sup>            | PIC16C621A <sup>(1)(4)</sup>        | PIC16C622 <sup>(3)</sup>            | PIC16C622A <sup>(1)(4)</sup>        |
|-------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Clock       | Maximum Frequency<br>of Operation (MHz) | 20                                  | 40                                  | 20                                  | 20                                  | 40                                  | 20                                  | 40                                  |
| Memory      | EPROM Program<br>Memory<br>(x14 words)  | 512                                 | 512                                 | 512                                 | 1K                                  | 1K                                  | 2K                                  | 2K                                  |
|             | Data Memory (bytes)                     | 80                                  | 96                                  | 96                                  | 80                                  | 96                                  | 128                                 | 128                                 |
| Peripherals | Timer Module(s)                         | TMR0                                | TMR0                                | TMRO                                | TMR0                                | TMR0                                | TMR0                                | TMR0                                |
|             | Comparators(s)                          | 2                                   | 2                                   | 2                                   | 2                                   | 2                                   | 2                                   | 2                                   |
|             | Internal Reference<br>Voltage           | Yes                                 |
| Features    | Interrupt Sources                       | 4                                   | 4                                   | 4                                   | 4                                   | 4                                   | 4                                   | 4                                   |
|             | I/O Pins 13                             |                                     | 13                                  | 13                                  | 13                                  | 13                                  | 13                                  | 13                                  |
|             | Voltage Range (Volts)                   | 2.5-6.0                             | 2.7-5.5                             | 2.5-5.5                             | 2.5-6.0                             | 2.7-5.5                             | 2.5-6.0                             | 2.7-5.5                             |
|             | Brown-out Reset                         | Yes                                 |
|             | Packages                                | 18-pin DIP,<br>SOIC;<br>20-pin SSOP |

#### TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro<sup>®</sup> Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

**Note 1:** If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

**3:** For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

#### FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

| File<br>Address | 3                   |                     | File<br>Address |
|-----------------|---------------------|---------------------|-----------------|
| 00h             | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h             |
| 01h             | TMR0                | OPTION              | 81h             |
| 02h             | PCL                 | PCL                 | 82h             |
| 03h             | STATUS              | STATUS              | 83h             |
| 04h             | FSR                 | FSR                 | 84h             |
| 05h             | PORTA               | TRISA               | 85h             |
| 06h             | PORTB               | TRISB               | 86h             |
| 07h             |                     |                     | 87h             |
| 08h             |                     |                     | 88h             |
| 09h             |                     |                     | 89h             |
| 0Ah             | PCLATH              | PCLATH              | 8Ah             |
| 0Bh             | INTCON              | INTCON              | 8Bh             |
| 0Ch             | PIR1                | PIE1                | 8Ch             |
| 0Dh             |                     |                     | 8Dh             |
| 0Eh             |                     | PCON                | 8Eh             |
| 0Fh             |                     |                     | 8Fh             |
| 10h             |                     |                     | 90h             |
| 11h             |                     |                     | 91h             |
| 12h             |                     |                     | 92h             |
| 13h             |                     |                     | 93h             |
| 14h             |                     |                     | 94h             |
| 15h             |                     |                     | 95h             |
| 16h             |                     |                     | 96h             |
| 17h             |                     |                     | 97h             |
| 18h             |                     |                     | 98h             |
| 19h             |                     |                     | 99h             |
| 1Ah             |                     |                     | 9Ah             |
| 1Bh             |                     |                     | 9Bh             |
| 1Ch             |                     |                     | 9Ch             |
| 1Dh             |                     |                     | 9Dh             |
| 1Eh             |                     |                     | 9Eh             |
| 1Fh             | CMCON               | VRCON               | 9Fh             |
| 20h             | Osmanal             |                     | A0h             |
|                 | Purpose             |                     |                 |
| 6Eb             | Register            |                     |                 |
|                 |                     |                     |                 |
| 70n             |                     |                     |                 |
| Į               |                     |                     | _               |
|                 |                     |                     |                 |
|                 |                     |                     |                 |
| 7Fh             | Donk 0              | Dorld 1             | FFh             |
|                 | Dank U              | Bank T              |                 |
| Unimp           | plemented data me   | mory locations, r   | ead as '0'.     |
| Note 1:         | Not a physical re   | egister.            |                 |
|                 |                     |                     |                 |

## FIGURE 4-5:

#### DATA MEMORY MAP FOR THE PIC16C622

| File<br>Address | 3                                |                     | File<br>Address |  |  |  |  |  |  |
|-----------------|----------------------------------|---------------------|-----------------|--|--|--|--|--|--|
| 00h             | INDF <sup>(1)</sup>              | INDF <sup>(1)</sup> | 80h             |  |  |  |  |  |  |
| 01h             | TMR0                             | OPTION              | 81h             |  |  |  |  |  |  |
| 02h             | PCL                              | PCL                 | 82h             |  |  |  |  |  |  |
| 03h             | STATUS                           | STATUS              | 83h             |  |  |  |  |  |  |
| 04h             | FSR                              | FSR                 | 84h             |  |  |  |  |  |  |
| 05h             | PORTA                            | TRISA               | 85h             |  |  |  |  |  |  |
| 06h             | PORTB                            | TRISB               | 86h             |  |  |  |  |  |  |
| 07h             |                                  |                     | 87h             |  |  |  |  |  |  |
| 08h             |                                  |                     | 88h             |  |  |  |  |  |  |
| 09h             |                                  |                     | 89h             |  |  |  |  |  |  |
| 0Ah             | PCLATH                           | PCLATH              | 8Ah             |  |  |  |  |  |  |
| 0Bh             | INTCON                           | INTCON              | 8Bh             |  |  |  |  |  |  |
| 0Ch             | PIR1                             | PIE1                | 8Ch             |  |  |  |  |  |  |
| 0Dh             |                                  |                     | 8Dh             |  |  |  |  |  |  |
| 0Eh             |                                  | PCON                | 8Eh             |  |  |  |  |  |  |
| 0Fh             |                                  |                     | 8Fh             |  |  |  |  |  |  |
| 10h             |                                  |                     | 90h             |  |  |  |  |  |  |
| 11h             |                                  |                     | 91h             |  |  |  |  |  |  |
| 12h             |                                  |                     | 92h             |  |  |  |  |  |  |
| 13h             |                                  |                     | 93h             |  |  |  |  |  |  |
| 14h             |                                  |                     | 94h             |  |  |  |  |  |  |
| 15h             |                                  |                     | 95h             |  |  |  |  |  |  |
| 16h             |                                  |                     | 96h             |  |  |  |  |  |  |
| 17h             |                                  |                     | 97h             |  |  |  |  |  |  |
| 18h             |                                  |                     | 98h             |  |  |  |  |  |  |
| 19h             |                                  |                     | 99h             |  |  |  |  |  |  |
| 1Ah             |                                  |                     | 9Ah             |  |  |  |  |  |  |
| 1Bh             |                                  |                     | 9Bh             |  |  |  |  |  |  |
| 1Ch             |                                  |                     | 9Ch             |  |  |  |  |  |  |
| 1Dh             |                                  |                     | 9Dh             |  |  |  |  |  |  |
| 1Eh             |                                  |                     | 9Eh             |  |  |  |  |  |  |
| 1Fh             | CMCON                            | VRCON               | 9Fh             |  |  |  |  |  |  |
| 20h             |                                  |                     | A0h             |  |  |  |  |  |  |
|                 | General                          | General             | 7.011           |  |  |  |  |  |  |
|                 | Purpose<br>Register              | Purpose<br>Register |                 |  |  |  |  |  |  |
|                 | rtogiotor                        | rtogiotor           | BFh             |  |  |  |  |  |  |
|                 |                                  |                     | C0h             |  |  |  |  |  |  |
|                 |                                  |                     |                 |  |  |  |  |  |  |
|                 |                                  |                     |                 |  |  |  |  |  |  |
|                 |                                  |                     |                 |  |  |  |  |  |  |
| 7Fh             |                                  |                     | FFh             |  |  |  |  |  |  |
| ,,,,,           | Bank 0                           | Bank 1              |                 |  |  |  |  |  |  |
|                 |                                  |                     |                 |  |  |  |  |  |  |
| Unimp           | plemented data me                | mory locations, re  | ead as '0'.     |  |  |  |  |  |  |
| Note 1:         | Not a physical m                 | aistor              |                 |  |  |  |  |  |  |
| NOLE T:         | lote 1: Not a physical register. |                     |                 |  |  |  |  |  |  |

#### 4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

**Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

|        | R/W-0                       | R/W-0         | R/W-0                         | R/W-0                  | R/W-0          | R/W-0         | R/W-0        | R/W-x |  |
|--------|-----------------------------|---------------|-------------------------------|------------------------|----------------|---------------|--------------|-------|--|
|        | GIE                         | PEIE          | T0IE                          | INTE                   | RBIE           | T0IF          | INTF         | RBIF  |  |
|        | bit 7                       |               |                               | <u>.</u>               |                | <u>.</u>      |              | bit 0 |  |
|        |                             |               |                               |                        |                |               |              |       |  |
| bit 7  | GIE: Globa                  | I Interrupt E | nable bit                     |                        |                |               |              |       |  |
|        | 1 = Enables                 | s all un-mas  | sked interrup                 | ots                    |                |               |              |       |  |
| 1.11.0 | 0 = Disables all interrupts |               |                               |                        |                |               |              |       |  |
| 0 110  | PEIE: Perip                 |               | upt Enable i                  | DIT<br>                | -              |               |              |       |  |
|        | 1 = Enables<br>0 = Disable  | s all un-mas  | sked periphe<br>eral interrun | eral interrupt         | S              |               |              |       |  |
| bit 5  |                             | 0 Overflow    | Interrunt En                  | able bit               |                |               |              |       |  |
| bit o  | 1 = Enables                 | s the TMR0    | interrupt                     |                        |                |               |              |       |  |
|        | 0 = Disable                 | s the TMR     | ) interrupt                   |                        |                |               |              |       |  |
| bit 4  | INTE: RB0/                  | INT Externa   | al Interrupt E                | Enable bit             |                |               |              |       |  |
|        | 1 = Enables                 | s the RB0/I   | NT external                   | interrupt              |                |               |              |       |  |
|        | 0 = Disable                 | s the RB0/I   | NT external                   | interrupt              |                |               |              |       |  |
| bit 3  | RBIE: RB F                  | ort Change    | Interrupt E                   | nable bit              |                |               |              |       |  |
|        | 1 = Enables                 | s the RB po   | rt change in                  | iterrupt               |                |               |              |       |  |
| L:4 0  |                             |               | oft change in                 | iterrupi               |                |               |              |       |  |
| DIL ∠  |                             | J OVernow i   |                               | g Dit                  | - ared in coff | +             |              |       |  |
|        | 1 = TMR0 r<br>0 = TMR0 r    | register did  | not overflow                  | (ที่มีประ มีฮ มีฮ<br>/ | aleu ili son   | ware          |              |       |  |
| bit 1  | INTF: RB0/                  | INT Externa   | al Interrupt F                | -lag bit               |                |               |              |       |  |
|        | 1 = The RB                  | 30/INT exter  | nal interrup                  | t occurred (n          | nust be clea   | ared in softw | are)         |       |  |
|        | 0 = The RB                  | 30/INT exter  | nal interrupt                 | t did not occ          | ur             |               |              |       |  |
| bit 0  | <b>RBIF</b> : RB F          | ort Change    | Interrupt Fl                  | lag bit                |                |               |              |       |  |
|        | 1 = When a                  | at least one  | of the RB<7                   | ':4> pins cha          | anged state    | (must be cle  | ared in soft | ware) |  |
|        | 0 = None o                  | f the RB<1    | 4> pins nave                  | e changea s            | tate           |               |              |       |  |
|        | Larandi                     |               |                               |                        |                |               |              |       |  |
|        | Legend:                     |               |                               |                        |                |               |              |       |  |

| REGISTER 4-3: | INTCON REGISTER (ADDRESS 0BH OR 8BH) |  |
|---------------|--------------------------------------|--|
|               |                                      |  |

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### 4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

| Note: | BOR is unknown on Power-on Reset. It                         |  |  |  |  |  |  |
|-------|--------------------------------------------------------------|--|--|--|--|--|--|
|       | must then be set by the user and checked                     |  |  |  |  |  |  |
|       | on subsequent RESETS to see if BOR is                        |  |  |  |  |  |  |
|       | cleared, indicating a brown-out has                          |  |  |  |  |  |  |
|       | occurred. The $\overline{\text{BOR}}$ STATUS bit is a "don't |  |  |  |  |  |  |
|       | care" and is not necessarily predictable if                  |  |  |  |  |  |  |
|       | the brown-out circuit is disabled (by                        |  |  |  |  |  |  |
|       | programming BODEN bit in the                                 |  |  |  |  |  |  |
|       | Configuration word).                                         |  |  |  |  |  |  |

#### REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-----|-----|-----|-------|-------|
| —     | —   | —   | —   | —   | —   | POR   | BOR   |
| bit 7 |     |     |     |     |     |       | bit 0 |

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset STATUS bit

- 1 = No Power-on Reset occurred
- 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR**: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

| Name    | Bit # | Buffer Type           | Function                                                                                                                |
|---------|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| RB0/INT | bit0  | TTL/ST <sup>(1)</sup> | Input/output or external interrupt input. Internal software programmable weak pull-up.                                  |
| RB1     | bit1  | TTL                   | Input/output pin. Internal software programmable weak pull-up.                                                          |
| RB2     | bit2  | TTL                   | Input/output pin. Internal software programmable weak pull-up.                                                          |
| RB3     | bit3  | TTL                   | Input/output pin. Internal software programmable weak pull-up.                                                          |
| RB4     | bit4  | TTL                   | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.                               |
| RB5     | bit5  | TTL                   | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.                               |
| RB6     | bit6  | TTL/ST <sup>(2)</sup> | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin. |
| RB7     | bit7  | TTL/ST <sup>(2)</sup> | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.  |

#### TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

#### TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

| Address | Name   | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR | Value on<br>All Other<br>RESETS |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|---------------------------------|
| 06h     | PORTB  | RB7    | RB6    | RB5    | RB4    | RB3    | RB2    | RB1    | RB0    | XXXX XXXX       | uuuu uuuu                       |
| 86h     | TRISB  | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | 1111 1111       | 1111 1111                       |
| 81h     | OPTION | RBPU   | INTEDG | TOCS   | T0SE   | PSA    | PS2    | PS1    | PS0    | 1111 1111       | 1111 1111                       |

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

## 7.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-Chip Voltage Reference (Section 8.0) can also be an input to the comparators.

The CMCON register, shown in Register 7-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 7-1.

#### REGISTER 7-1: CMCON REGISTER (ADDRESS 1Fh)

|         | R-0                                                                                                                                                                                                                                                             | R-0         | U-0      | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-----|-------|-------|-------|-------|--|--|--|
|         | C2OUT                                                                                                                                                                                                                                                           | C10UT       | —        | —   | CIS   | CM2   | CM1   | CM0   |  |  |  |
|         | bit 7                                                                                                                                                                                                                                                           |             |          |     |       |       |       | bit 0 |  |  |  |
| bit 7   | <b>C2OUT</b> : Comparator 2 output<br>1 = C2 VIN+ > C2 VIN-<br>0 = C2 VIN+ < C2 VIN-                                                                                                                                                                            |             |          |     |       |       |       |       |  |  |  |
| bit 6   | <b>C1OUT</b> : Comparator 1 output<br>1 = C1 Vin+ > C1 Vin-<br>0 = C1 Vin+ < C1 Vin-                                                                                                                                                                            |             |          |     |       |       |       |       |  |  |  |
| bit 5-4 | Unimplem                                                                                                                                                                                                                                                        | ented: Read | d as '0' |     |       |       |       |       |  |  |  |
| bit 3   | CIS: Comparator Input Switch<br>When $CM<2:0>:=001:$<br>1 = C1 VIN- connects to RA3<br>0 = C1 VIN- connects to RA0<br>When $CM<2:0> = 010:$<br>1 = C1 VIN- connects to RA3<br>C2 VIN- connects to RA2<br>0 = C1 VIN- connects to RA0<br>C2 VIN- connects to RA0 |             |          |     |       |       |       |       |  |  |  |
| bit 2-0 | CM<2:0>: (                                                                                                                                                                                                                                                      | Comparator  | mode.    |     |       |       |       |       |  |  |  |
|         | Logondi                                                                                                                                                                                                                                                         |             |          |     |       |       |       |       |  |  |  |

| L | .egend:          |                  |                      |                    |
|---|------------------|------------------|----------------------|--------------------|
| F | R = Readable bit | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - | n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### 8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

#### 8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

|               | R/W-0                      | R/W-0                         | R/W-0                  | U-0          | R/W-0       | R/W-0      | R/W-0        | R/W-0   |
|---------------|----------------------------|-------------------------------|------------------------|--------------|-------------|------------|--------------|---------|
|               | VREN                       | VROE                          | Vrr                    | _            | VR3         | VR2        | VR1          | Vr0     |
|               | bit 7                      |                               |                        |              |             |            |              | bit 0   |
|               |                            |                               |                        |              |             |            |              |         |
| bit 7         | VREN: VREI<br>1 = VREF C   | F Enable<br>ircuit power      | ed on                  |              |             |            |              |         |
|               | 0 = VREF C                 | ircuit powere                 | ed down, no            | IDD drain    |             |            |              |         |
| bit 6         | VROE: VRE                  | F Output En                   | able                   |              |             |            |              |         |
|               | 1 = VREF IS<br>0 = VREF IS | s output on F<br>s disconnect | cA2 pin<br>ed from RA2 | 2 pin        |             |            |              |         |
| bit 5         | VRR: VREF                  | Range sele                    | ction                  | •            |             |            |              |         |
|               | 1 = Low Ra                 | ange                          |                        |              |             |            |              |         |
| hit 1         |                            | ange                          | d aa '0'               |              |             |            |              |         |
| DIC 4         | Unimplem                   | ented: Rea                    | das U                  |              |             |            |              |         |
| bit 3-0       | VR<3:0>: \                 | /REF value s                  | election $0 \leq$      | VR [3:0] ≤ 1 | 5           |            |              |         |
|               | when VRR                   | = 1: VREF =                   | (VR<3:0>/ 2            | 4) * VDD     | 0) + ) /    |            |              |         |
|               | when VRR                   | = 0: VREF =                   | 1/4 ^ VDD +            | (VR<3:0>/ 3  | 2) ^ VDD    |            |              |         |
|               | Legend:                    |                               |                        |              |             |            |              |         |
|               | R = Reada                  | ıble bit                      | W = W                  | /ritable bit | U = Unin    | nplemented | bit, read as | '0'     |
|               | - n = Value                | at POR                        | '1' = B                | it is set    | '0' = Bit i | s cleared  | x = Bit is u | Inknown |
| 8-1:          | VOLTAGE                    |                               |                        | K DIAGR      | ۸M          |            |              |         |
|               |                            |                               | 16 \$                  | Stages       |             |            |              |         |
| $\sim$        | T                          |                               |                        | ∕            |             | _          |              |         |
| $\rightarrow$ | -여드 <sub>8R</sub>          | R                             | R                      | R            | R           |            |              |         |
|               |                            |                               | ΔΔΔ .                  | ۸ ۸ ۸        | A A A       |            |              |         |

#### **REGISTER 8-1:** VRCON REGISTER(ADDRESS 9Fh)

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented I  | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### **FIGURE 8-**



#### EXAMPLE 8-1: VOLTAGE REFERENCE CONFIGURATION

| MOVLW | 0x02        | ; 4 Inputs Muxed |
|-------|-------------|------------------|
| MOVWF | CMCON       | ; to 2 comps.    |
| BSF   | STATUS, RPO | ; go to Bank 1   |
| MOVLW | 0x0F        | ; RA3-RA0 are    |
| MOVWF | TRISA       | ; inputs         |
| MOVLW | 0xA6        | ; enable VREF    |
| MOVWF | VRCON       | ; low range      |
|       |             | ; set VR<3:0>=6  |
| BCF   | STATUS, RPO | ; go to Bank O   |
| CALL  | DELAY10     | ; 10µs delay     |

#### 8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep VREF from approaching VSS or VDD. The voltage reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in Table 12-2.

## 8.3 Operation During SLEEP

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time-out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the voltage reference should be disabled.

## 8.4 Effects of a RESET

A device RESET disables the voltage reference by clearing bit VREN (VRCON<7>). This reset also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

#### 8.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the voltage reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the voltage reference output for external connections to VREF. Figure 8-2 shows an example buffering technique.

# FIGURE 8-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

#### TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

| Address | Name  | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value On<br>POR | Value On<br>All Other<br>RESETS |
|---------|-------|-------|-------|-------|--------|--------|--------|--------|--------|-----------------|---------------------------------|
| 9Fh     | VRCON | VREN  | VROE  | VRR   |        | VR3    | VR2    | VR1    | VR0    | 000- 0000       | 000- 0000                       |
| 1Fh     | CMCON | C2OUT | C10UT | _     | -      | CIS    | CM2    | CM1    | CM0    | 00 0000         | 00 0000                         |
| 85h     | TRISA | _     | _     | _     | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 1 1111          | 1 1111                          |

**Note:** - = Unimplemented, read as "0"

| INCFSZ             | Increment f, Skip if 0                                                                                                                                                | IORWF            | Inclusive OR W with f                                                                                                                                                 |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:            | [label] INCFSZ f,d                                                                                                                                                    | Syntax:          | [ <i>label</i> ] IORWF f,d                                                                                                                                            |  |  |  |
| Operands:          | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                     | Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                    |  |  |  |
| Operation:         | (f) + 1 $\rightarrow$ (dest), skip if result = 0                                                                                                                      | Operation:       | (W) .OR. (f) $\rightarrow$ (dest)                                                                                                                                     |  |  |  |
| Status Affected:   | None                                                                                                                                                                  | Status Affected: | Z                                                                                                                                                                     |  |  |  |
| Encoding:          | 00 1111 dfff ffff                                                                                                                                                     | Encoding:        | 00 0100 dfff ffff                                                                                                                                                     |  |  |  |
| Description:       | The contents of register 'f' are<br>incremented. If 'd' is 0 the result is<br>placed in the W register. If 'd' is 1,<br>the result is placed back in<br>register 'f'. | Description:     | Inclusive OR the W register with<br>register 'f'. If 'd' is 0 the result is<br>placed in the W register. If 'd' is 1<br>the result is placed back in<br>register 'f'. |  |  |  |
|                    | If the result is 0, the next instruc-<br>tion which is already fetched is                                                                                             | Words:           | 1                                                                                                                                                                     |  |  |  |
|                    | discarded. A NOP is executed                                                                                                                                          | Cycles:          | 1                                                                                                                                                                     |  |  |  |
|                    | instead making it a two-cycle                                                                                                                                         | Example          | IORWF RESULT, 0                                                                                                                                                       |  |  |  |
|                    | instruction.                                                                                                                                                          |                  | Before Instruction                                                                                                                                                    |  |  |  |
| vvords:            | 1                                                                                                                                                                     |                  | $\begin{array}{rcl} RESULI &= & 0x13 \\ W &= & 0x91 \end{array}$                                                                                                      |  |  |  |
| Cycles:<br>Example | 1(2)<br>HERE INCFSZ CNT, 1<br>GOTO LOOP<br>CONTINUE •<br>•                                                                                                            |                  | After Instruction<br>$\begin{array}{rcl} RESULT &= & 0x13 \\ W &  = & 0x93 \\ Z &  = & 1 \end{array}$                                                                 |  |  |  |
|                    | Before Instruction                                                                                                                                                    | MOVLW            | Move Literal to W                                                                                                                                                     |  |  |  |
|                    | PC = address HERE                                                                                                                                                     | Syntax:          | [ <i>label</i> ] MOVLW k                                                                                                                                              |  |  |  |
|                    | CNT = CNT + 1                                                                                                                                                         | Operands:        | $0 \le k \le 255$                                                                                                                                                     |  |  |  |
|                    | if CNT= 0,                                                                                                                                                            | Operation:       | $k \rightarrow (W)$                                                                                                                                                   |  |  |  |
|                    | if $CNT \neq 0$ ,                                                                                                                                                     | Status Affected: | None                                                                                                                                                                  |  |  |  |
|                    | PC = address HERE +1                                                                                                                                                  | Encoding:        | 11 00xx kkkk kkkk                                                                                                                                                     |  |  |  |
| IORLW              | Inclusive OR Literal with W                                                                                                                                           | Description:     | The eight bit literal 'k' is loaded<br>into W register. The don't cares<br>will assemble as 0's                                                                       |  |  |  |
| Syntax:            | [ <i>label</i> ] IORLW k                                                                                                                                              | Words:           | 1                                                                                                                                                                     |  |  |  |
| Operands:          | $0 \le k \le 255$                                                                                                                                                     | Cycles:          | 1                                                                                                                                                                     |  |  |  |
| Operation:         | (W) .OR. $k \rightarrow$ (W)                                                                                                                                          | Example          | MOVLW 0x5A                                                                                                                                                            |  |  |  |
| Status Affected:   | Z                                                                                                                                                                     | _//om/pro        | After Instruction                                                                                                                                                     |  |  |  |
| Encoding:          | 11 1000 kkkk kkkk                                                                                                                                                     |                  | W = 0x5A                                                                                                                                                              |  |  |  |
| Description:       | The contents of the W register is<br>OR'ed with the eight bit literal 'k'.<br>The result is placed in the W<br>register.                                              |                  |                                                                                                                                                                       |  |  |  |
| Words:             | 1                                                                                                                                                                     |                  |                                                                                                                                                                       |  |  |  |
| Cycles:            | 1                                                                                                                                                                     |                  |                                                                                                                                                                       |  |  |  |
| Example            | IORLW 0x35                                                                                                                                                            |                  |                                                                                                                                                                       |  |  |  |
|                    | Before Instruction<br>W = 0x9A<br>After Instruction                                                                                                                   |                  |                                                                                                                                                                       |  |  |  |

W = Z =

0xBF 1 

| RETFIE           | Return from Interrupt                                                                 |                                                                               |                                                                                |                                    |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Syntax:          | [label] RETFIE                                                                        |                                                                               |                                                                                |                                    |  |  |  |  |
| Operands:        | None                                                                                  |                                                                               |                                                                                |                                    |  |  |  |  |
| Operation:       | $TOS \rightarrow PC, \\ 1 \rightarrow GIE$                                            |                                                                               |                                                                                |                                    |  |  |  |  |
| Status Affected: | None                                                                                  |                                                                               |                                                                                |                                    |  |  |  |  |
| Encoding:        | 00                                                                                    | 0000                                                                          | 0000                                                                           | 1001                               |  |  |  |  |
| Description:     | Return fro<br>POPed a<br>loaded in<br>enabled b<br>Interrupt<br>(INTCON<br>instructio | om Intern<br>nd Top o<br>the PC.<br>by setting<br>Enable b<br>I<7>). Th<br>n. | rupt. Stac<br>f Stack (T<br>Interrupts<br>g Global<br>bit, GIE<br>iis is a two | k is<br>OS) is<br>s are<br>o-cycle |  |  |  |  |
| Words:           | 1                                                                                     |                                                                               |                                                                                |                                    |  |  |  |  |
| Cycles:          | 2                                                                                     |                                                                               |                                                                                |                                    |  |  |  |  |
| Example          | RETFIE                                                                                |                                                                               |                                                                                |                                    |  |  |  |  |
|                  | After Inte                                                                            | rrupt<br>PC =<br>GIE =                                                        | TOS<br>1                                                                       |                                    |  |  |  |  |

| RETLW            | Return with Literal in W                                                                                                                                                            |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] RETLW k                                                                                                                                                            |  |  |  |  |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                                                                                                 |  |  |  |  |  |  |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow PC$                                                                                                                                        |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                |  |  |  |  |  |  |
| Encoding:        | 11 01xx kkkk kkkk                                                                                                                                                                   |  |  |  |  |  |  |
| Description:     | The W register is loaded with the<br>eight bit literal 'k'. The program<br>counter is loaded from the top of<br>the stack (the return address).<br>This is a two-cycle instruction. |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                   |  |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                   |  |  |  |  |  |  |
| Example          | CALL TABLE;W contains<br>table                                                                                                                                                      |  |  |  |  |  |  |
| TABLE            | ;offset value<br>• ;W now has table value<br>•                                                                                                                                      |  |  |  |  |  |  |
|                  | ADDWF PC ;W = offset<br>RETLW k1 ;Begin table<br>RETLW k2 ;<br>•                                                                                                                    |  |  |  |  |  |  |
|                  | •<br>RETLW kn ;End of table                                                                                                                                                         |  |  |  |  |  |  |
|                  | Before Instruction                                                                                                                                                                  |  |  |  |  |  |  |
|                  | W = 0x07<br>After Instruction<br>W = value of k8                                                                                                                                    |  |  |  |  |  |  |
| RETURN           | Return from Subroutine                                                                                                                                                              |  |  |  |  |  |  |
| Svntax:          | [ <i>label</i> ] RETURN                                                                                                                                                             |  |  |  |  |  |  |
| Operands:        | None                                                                                                                                                                                |  |  |  |  |  |  |
| Operation:       | $TOS \rightarrow PC$                                                                                                                                                                |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                |  |  |  |  |  |  |
| Encoding:        | 00 0000 0000 1000                                                                                                                                                                   |  |  |  |  |  |  |
| Description:     | Return from subroutine. The stack<br>is POPed and the top of the stack<br>(TOS) is loaded into the program<br>counter. This is a two-cycle<br>instruction.                          |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                   |  |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                   |  |  |  |  |  |  |
| Example          | RETURN                                                                                                                                                                              |  |  |  |  |  |  |
|                  | After Interrupt<br>PC = TOS                                                                                                                                                         |  |  |  |  |  |  |

NOTES:

## 12.0 ELECTRICAL SPECIFICATIONS

#### Absolute Maximum Ratings †

| Ambient Temperature under bias                                                                      | 40° to +125°C                                       |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Storage Temperature                                                                                 | 65° to +150°C                                       |
| Voltage on any pin with respect to Vss (except VDD and MCLR)                                        | -0.6V to VDD +0.6V                                  |
| Voltage on VDD with respect to VSS                                                                  | 0 to +7.5V                                          |
| Voltage on MCLR with respect to Vss (Note 2)                                                        | 0 to +14V                                           |
| Voltage on RA4 with respect to Vss                                                                  | 8.5V                                                |
| Total power Dissipation (Note 1)                                                                    | 1.0W                                                |
| Maximum Current out of Vss pin                                                                      |                                                     |
| Maximum Current into VDD pin                                                                        |                                                     |
| Input Clamp Current, Iк (Vi <0 or Vi> VDD)                                                          | ±20 mA                                              |
| Output Clamp Current, IOK (Vo <0 or Vo>VoD)                                                         | ±20 mA                                              |
| Maximum Output Current sunk by any I/O pin                                                          |                                                     |
| Maximum Output Current sourced by any I/O pin                                                       | 25 mA                                               |
| Maximum Current sunk by PORTA and PORTB                                                             |                                                     |
| Maximum Current sourced by PORTA and PORTB                                                          |                                                     |
| <b>Note 1:</b> Power dissipation is calculated as follows: PDIS = VDD x {IDD - $\sum$ IOH} + $\sum$ | $\{(VDD-VOH) \times IOH\} + \sum (VOI \times IOL).$ |

2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

**† NOTICE**: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.



## FIGURE 12-4: PIC16C62XA VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le Ta \le 0^{\circ}C$ , $+70^{\circ}C \le Ta \le +125^{\circ}C$







#### 12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

| PIC16C62XA    |                |                                                          | Stand<br>Opera | dard O<br>ating te | <b>perati</b><br>empera | n <b>g Con</b><br>iture -4<br>-4 | ditions (unless otherwise stated)<br>$10^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and<br>$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and<br>$10^{\circ}C \leq TA \leq +125^{\circ}C$ for extended |
|---------------|----------------|----------------------------------------------------------|----------------|--------------------|-------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIC16LC62XA   |                |                                                          | Stand<br>Opera | dard O<br>ating te | <b>perati</b><br>empera | ng Con<br>ature -4<br>-4         | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                  |
| Param.<br>No. | Sym            | Characteristic                                           | Min            | Тур†               | Max                     | Units                            | Conditions                                                                                                                                                                                                            |
| D022          | ΔİWDT          | WDT Current <sup>(5)</sup>                               | —              | 6.0                | 10<br>12                | μA<br>μA                         | VDD = 4.0V<br>(125°C)                                                                                                                                                                                                 |
| D022A         | $\Delta$ IBOR  | Brown-out Reset Current <sup>(5)</sup>                   | —              | 75                 | 125                     | μA                               | BOD enabled, VDD = 5.0V                                                                                                                                                                                               |
| D023          |                | Comparator Current for each<br>Comparator <sup>(5)</sup> | _              | 30                 | 60                      | μA                               | VDD = 4.0V                                                                                                                                                                                                            |
| D023A         | ΔIVREF         | VREF Current <sup>(3)</sup>                              | _              | 80                 | 135                     | μA                               | VDD = 4.0V                                                                                                                                                                                                            |
| D022          | $\Delta$ IWDT  | WDT Current <sup>(5)</sup>                               | —              | 6.0                | 10                      | μΑ                               | VDD=4.0V                                                                                                                                                                                                              |
| DOODA         | 41             | Descent Descet Operation (5)                             |                | 75                 | 12                      | μA                               | $\frac{(125^{\circ}C)}{200} = 5.017$                                                                                                                                                                                  |
| D022A         |                | Brown-out Reset Current <sup>(e)</sup>                   |                | 75                 | 125                     | μΑ                               | BOD enabled, $VDD = 5.0V$                                                                                                                                                                                             |
| D023          | AICOMP         | Comparator Current for each                              |                | 30                 | 60                      | μΑ                               | VDD - 4.0V                                                                                                                                                                                                            |
| D023A         | $\Delta$ IVREF | VREF Current <sup>(5)</sup>                              | _              | 80                 | 135                     | μA                               | VDD = 4.0V                                                                                                                                                                                                            |
| 1A            | Fosc           | LP Oscillator Operating Frequency                        | 0              | —                  | 200                     | kHz                              | All temperatures                                                                                                                                                                                                      |
|               |                | RC Oscillator Operating Frequency                        | 0              | —                  | 4                       | MHz                              | All temperatures                                                                                                                                                                                                      |
|               |                | XT Oscillator Operating Frequency                        | 0              |                    | 4                       | MHz                              | All temperatures                                                                                                                                                                                                      |
|               |                | HS Oscillator Operating Frequency                        | 0              | —                  | 20                      | MHZ                              | All temperatures                                                                                                                                                                                                      |
| 1A            | Fosc           | LP Oscillator Operating Frequency                        | 0              | —                  | 200                     | kHz                              | All temperatures                                                                                                                                                                                                      |
|               |                | RC Oscillator Operating Frequency                        | 0              | —                  | 4                       | MHz                              | All temperatures                                                                                                                                                                                                      |
|               |                | HS Oscillator Operating Frequency                        | 0              | _                  | 4<br>20                 | MHZ<br>MHZ                       | All temperatures<br>All temperatures                                                                                                                                                                                  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$  = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

#### 12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

| PIC16CR62XA-04<br>PIC16CR62XA-20 |      |                                               | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}$ C $\leq$ TA $\leq$ +85°C for industrial and $0^{\circ}$ C $\leq$ TA $\leq$ +70°C for commercial and $40^{\circ}$ C $\leq$ TA $\leq$ +125°C for ovtended |                                                                                                                                                                                                                                                                       |           |       |                                                                          |  |  |  |
|----------------------------------|------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|--------------------------------------------------------------------------|--|--|--|
| PIC16LCR62XA-04                  |      |                                               |                                                                                                                                                                                                                                                    | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}$ C $\leq TA \leq +85^{\circ}$ C for industrial and $0^{\circ}$ C $\leq TA \leq +70^{\circ}$ C for commercial and $-40^{\circ}$ C $\leq TA \leq +125^{\circ}$ C for extended |           |       |                                                                          |  |  |  |
| Param.<br>No.                    | Sym  | Characteristic                                | Min                                                                                                                                                                                                                                                | Тур†                                                                                                                                                                                                                                                                  | Мах       | Units | Conditions                                                               |  |  |  |
| D001                             | Vdd  | Supply Voltage                                | 3.0                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                     | 5.5       | V     | See Figures 12-7, 12-8, 12-9                                             |  |  |  |
| D001                             | Vdd  | Supply Voltage                                | 2.5                                                                                                                                                                                                                                                | —                                                                                                                                                                                                                                                                     | 5.5       | V     | See Figures 12-7, 12-8, 12-9                                             |  |  |  |
| D002                             | Vdr  | RAM Data Retention<br>Voltage <sup>(1)</sup>  | -                                                                                                                                                                                                                                                  | 1.5*                                                                                                                                                                                                                                                                  | —         | V     | Device in SLEEP mode                                                     |  |  |  |
| D002                             | Vdr  | RAM Data Retention<br>Voltage <sup>(1)</sup>  | -                                                                                                                                                                                                                                                  | 1.5*                                                                                                                                                                                                                                                                  | _         | V     | Device in SLEEP mode                                                     |  |  |  |
| D003                             | VPOR | VDD start voltage to<br>ensure Power-on Reset | —                                                                                                                                                                                                                                                  | Vss                                                                                                                                                                                                                                                                   |           | V     | See section on Power-on Reset for details                                |  |  |  |
| D003                             | VPOR | VDD start voltage to<br>ensure Power-on Reset | —                                                                                                                                                                                                                                                  | Vss                                                                                                                                                                                                                                                                   |           | V     | See section on Power-on Reset for details                                |  |  |  |
| D004                             | SVDD | VDD rise rate to ensure<br>Power-on Reset     | 0.05*                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                     | _         | V/ms  | See section on Power-on Reset for details                                |  |  |  |
| D004                             | SVDD | VDD rise rate to ensure<br>Power-on Reset     | 0.05*                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                     | _         | V/ms  | See section on Power-on Reset for details                                |  |  |  |
| D005                             | VBOR | Brown-out Detect Voltage                      | 3.7                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                   | 4.35      | V     | BOREN configuration bit is cleared                                       |  |  |  |
| D005                             | VBOR | Brown-out Detect Voltage                      | 3.7                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                   | 4.35      | V     | BOREN configuration bit is cleared                                       |  |  |  |
| D010                             | IDD  | Supply Current <sup>(2)</sup>                 | -                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                   | 1.7       | mA    | Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode,<br>(Note 4)*            |  |  |  |
|                                  |      |                                               | _                                                                                                                                                                                                                                                  | 500                                                                                                                                                                                                                                                                   | 900       | μA    | Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode,<br>(Note 4)             |  |  |  |
|                                  |      |                                               | -                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                   | 2.0       | mA    | Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode,<br>(Note 6)            |  |  |  |
|                                  |      |                                               |                                                                                                                                                                                                                                                    | 4.0                                                                                                                                                                                                                                                                   | 7.0       | mA    | FOSC = 20 MHz, VDD = 5.5V, WD1 disabled <sup>*</sup> , HS                |  |  |  |
|                                  |      |                                               |                                                                                                                                                                                                                                                    | 3.0                                                                                                                                                                                                                                                                   | 0.0<br>70 |       | Fose = 20 MHz Vpp = 4 5V WDT disabled HS mode                            |  |  |  |
|                                  |      |                                               |                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                    | 10        | μΛ    | Fose = $32 \text{ kHz}$ , VDD = $3.0\text{V}$ , WDT disabled, LP mode    |  |  |  |
| D010                             | IDD  | Supply Current <sup>(2)</sup>                 | -                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                   | 1.7       | mA    | Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT<br>mode, ( <b>Note 4</b> )* |  |  |  |
|                                  |      |                                               | -                                                                                                                                                                                                                                                  | 400                                                                                                                                                                                                                                                                   | 800       | μA    | Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)               |  |  |  |
|                                  |      |                                               | -                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                    | 70        | μA    | Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode                         |  |  |  |

#### 12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

| PIC16C        | 62X/C  | 62XA/CR62XA                               | <b>Standaı</b><br>Operatir | r <b>d Ope</b><br>ng tem | rating Co<br>perature | ondition<br>-40°C<br>0°C<br>-40°C | The second second system is the second seco |
|---------------|--------|-------------------------------------------|----------------------------|--------------------------|-----------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIC16L        | C62X/I | LC62XA/LCR62XA                            | <b>Standa</b><br>Operatii  | r <b>d Ope</b><br>ng tem | perating C            | onditio<br>-40°C<br>0°C<br>-40°C  | ns (unless otherwise stated)<br>$\leq$ TA $\leq$ +85°C for industrial and<br>$\leq$ TA $\leq$ +70°C for commercial and<br>$\leq$ TA $\leq$ +125°C for extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Param.<br>No. | Sym    | Characteristic                            | Min                        | Тур†                     | Мах                   | Units                             | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | VIL    | Input Low Voltage                         |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |        | I/O ports                                 |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D030          |        | with TTL buffer                           | Vss                        | —                        | 0.8V<br>0.15 VDD      | V                                 | VDD = 4.5V to 5.5V<br>otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D031          |        | with Schmitt Trigger input                | Vss                        |                          | 0.2 VDD               | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D032          |        | MCLR, RA4/T0CKI,OSC1 (in RC mode)         | Vss                        |                          | 0.2 VDD               | V                                 | (Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D033          |        | OSC1 (in XT and HS)                       | Vss                        | _                        | 0.3 Vdd               | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |        | OSC1 (in LP)                              | Vss                        | —                        | 0.6 Vdd-<br>1.0       | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | VIL    | Input Low Voltage                         |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |        | I/O ports                                 |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D030          |        | with TTL buffer                           | Vss                        | -                        | 0.8V<br>0.15 Vdd      | V                                 | VDD = 4.5V to 5.5V<br>otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D031          |        | with Schmitt Trigger input                | Vss                        | —                        | 0.2 VDD               | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D032          |        | MCLR, RA4/T0CKI,OSC1 (in RC mode)         | Vss                        | —                        | 0.2 Vdd               | V                                 | (Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D033          |        | OSC1 (in XT and HS)                       | Vss                        | —                        | 0.3 VDD               | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |        | OSC1 (in LP)                              | Vss                        | _                        | 0.6 Vdd-<br>1.0       | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | Vih    | Input High Voltage                        |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |        | I/O ports                                 |                            |                          |                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D040          |        | with TTL buffer                           | 2.0V<br>0.25 VDD<br>+ 0.8V | _                        | Vdd<br>Vdd            | V                                 | VDD = 4.5V to 5.5V<br>otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D041          |        | with Schmitt Trigger input                | 0.8 VDD                    | _                        | VDD                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D042          |        | MCLR RA4/T0CKI                            | 0.8 Vdd                    | —                        | Vdd                   | V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D043<br>D043A |        | OSC1 (XT, HS and LP)<br>OSC1 (in RC mode) | 0.7 Vdd<br>0.9 Vdd         | _                        | Vdd                   | V                                 | (Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.





![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

![](_page_19_Figure_2.jpeg)

|                          |        | INCHES* |      | MILLIMETERS |      |        |        |
|--------------------------|--------|---------|------|-------------|------|--------|--------|
| Dimension                | Limits | MIN     | NOM  | MAX         | MIN  | NOM    | MAX    |
| Number of Pins           | n      |         | 20   |             |      | 20     |        |
| Pitch                    | р      |         | .026 |             |      | 0.65   |        |
| Overall Height           | Α      | .068    | .073 | .078        | 1.73 | 1.85   | 1.98   |
| Molded Package Thickness | A2     | .064    | .068 | .072        | 1.63 | 1.73   | 1.83   |
| Standoff §               | A1     | .002    | .006 | .010        | 0.05 | 0.15   | 0.25   |
| Overall Width            | E      | .299    | .309 | .322        | 7.59 | 7.85   | 8.18   |
| Molded Package Width     | E1     | .201    | .207 | .212        | 5.11 | 5.25   | 5.38   |
| Overall Length           | D      | .278    | .284 | .289        | 7.06 | 7.20   | 7.34   |
| Foot Length              | L      | .022    | .030 | .037        | 0.56 | 0.75   | 0.94   |
| Lead Thickness           | С      | .004    | .007 | .010        | 0.10 | 0.18   | 0.25   |
| Foot Angle               | ¢      | 0       | 4    | 8           | 0.00 | 101.60 | 203.20 |
| Lead Width               | В      | .010    | .013 | .015        | 0.25 | 0.32   | 0.38   |
| Mold Draft Angle Top     | α      | 0       | 5    | 10          | 0    | 5      | 10     |
| Mold Draft Angle Bottom  | β      | 0       | 5    | 10          | 0    | 5      | 10     |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

DS30235J-page 116

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| PART NO.                  | <u>-xx</u>                                                                                                                                                      | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>/xx</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xxx                                                                                             | E  | xamples:                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|
| Device                    | Frequency<br>Range                                                                                                                                              | Temperature<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pattern                                                                                         | a) | <ul> <li>PIC16C621A - 04/P 301 = Commercial temp<br/>PDIP package, 4 MHz, normal VDD limits, QT<br/>pattern #301.</li> </ul> |
| Device<br>Frequency Range | PIC16C6<br>PIC16C6<br>PIC16C6<br>PIC16LC<br>PIC16LC<br>PIC16LC<br>PIC16LC<br>PIC16LC<br>PIC16CF<br>PIC16CF<br>PIC16CC<br>PIC16LC<br>04 200<br>04 4 M<br>20 20 M | 52X: VDD range 3.0<br>52X: VDD range 3.0<br>52XA: VDD range 3.0<br>52XA: VDD range 2.5<br>562XA: VDD range 2.5<br>572XA: VD rang | / to 6.0V<br>// to 6.0V (Tape<br>0V to 5.5V<br>0V to 5.5V (Taj<br>5V to 6.0V<br>.5V to 6.0V (Taj<br>.5V to 5.5V<br>2.5V to 5.5V<br>2.5V to 5.5V<br>2.5V to 5.5V<br>2.5V to 5.5V<br>2.5V to 5.5V<br>2.0V to 5.5V<br>2.0V to 5.5V<br>(Taj<br>.5V to 5.5V<br>.5V to 5.5V to 5.5V<br>.5V to 5.5V to 5.5V<br>.5V to 5.5V to 5.5V<br>.5V to 5.5V to 5 | e and Reel)<br>be and Reel)<br>be and Reel)<br>ape and Reel)<br>ape and Reel)<br>Tape and Reel) | )  | <ul> <li>PIC16LC622- 04I/SO = Industrial temp., SOI<br/>package, 200 kHz, extended VDD limits.</li> </ul>                    |
| emperature Range          | e - =<br>I =<br>E =                                                                                                                                             | 0°C to +70°C<br>-40°C to +85°C<br>-40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |    |                                                                                                                              |
| Package                   | P =<br>SO =<br>SS =<br>JW* =                                                                                                                                    | PDIP<br>SOIC (Gull Wing,<br>SSOP (209 mil)<br>Windowed CERD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 300 mil body)<br>NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |    |                                                                                                                              |
| Pattern                   | 3-Digit Pa                                                                                                                                                      | attern Code for QTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optimize (blank otherwise)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se)                                                                                             |    |                                                                                                                              |

\* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

#### Sales and Support

#### **Data Sheets**

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

#### **New Customer Notification System**

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.