

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

201010	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	80 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc620t-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

PIC16C62X

EPROM-Based 8-Bit CMOS Microcontrollers

Devices included in this data sheet:

Referred to collectively as PIC16C62X.

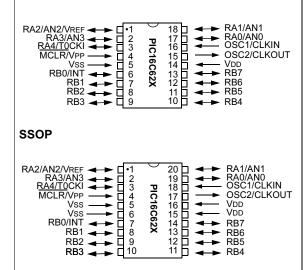
- PIC16C620 PIC16C620A
- PIC16C621 PIC16C621A
- PIC16C622 PIC16C622A
- PIC16CR620A

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
 - DC 40 MHz clock input
 - DC 100 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C620	512	80
PIC16C620A	512	96
PIC16CR620A	512	96
PIC16C621	1K	80
PIC16C621A	1K	96
PIC16C622	2K	128
PIC16C622A	2K	128

· Interrupt capability


- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

Special Microcontroller Features:

- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

CMOS Technology:

- Low power, high speed CMOS EPROM technology
- Fully static design
- · Wide operating range
 - 2.5V to 5.5V
- Commercial, industrial and extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical @ 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

1.0 GENERAL DESCRIPTION

The PIC16C62X devices are 18 and 20-Pin ROM/ EPROM-based members of the versatile PICmicro[®] family of low cost, high performance, CMOS, fullystatic, 8-bit microcontrollers.

All PICmicro microcontrollers employ an advanced RISC architecture. The PIC16C62X devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C620A, PIC16C621A and PIC16CR620A have 96 bytes of RAM. The PIC16C622(A) has 128 bytes of RAM. Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16C62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16C62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost effective One-Time-Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C62X midrange microcontroller families.

A simplified block diagram of the PIC16C62X is shown in Figure 3-1.

The PIC16C62X series fits perfectly in applications ranging from battery chargers to low power remote sensors. The EPROM technology makes

customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C62X very versatile.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to PIC16C62X family of devices (Appendix B). The PIC16C62X family fills the niche for users wanting to migrate up from the PIC16C5X family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. Third Party "C" compilers are also available.

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART[®] and PRO MATE[®] programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

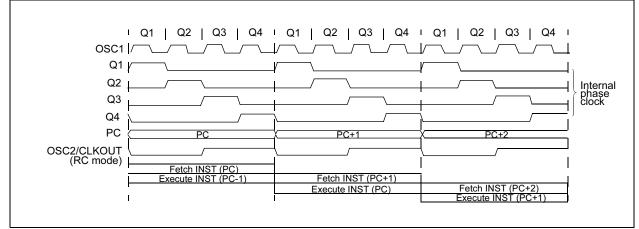
Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Productionsm (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

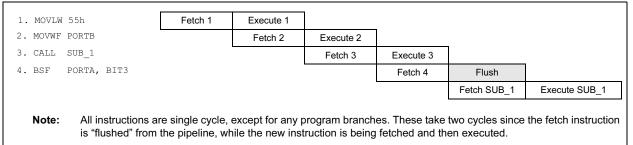
Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.2.2.4 PIE1 Register

This register contains the individual enable bit for the comparator interrupt.

REGISTER 4-4:	PIE1 REGISTER (ADDRESS 8CH)									
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
		CMIE	_			—	_	—		
	bit 7							bit 0		
bit 7	Unimplemented: Read as '0'									
bit 6	CMIE : Comparator Interrupt Enable bit 1 = Enables the Comparator interrupt 0 = Disables the Comparator interrupt									
bit 5-0	Unimpleme	nted: Read	d as '0'							
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read- n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit							bit, read as ' x = Bit is u			

4.2.2.5 PIR1 Register

This register contains the individual flag bit for the comparator interrupt.

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of							
	its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User							
	software should ensure the appropriate							
	interrupt flag bits are clear prior to enabling							
	an interrupt.							

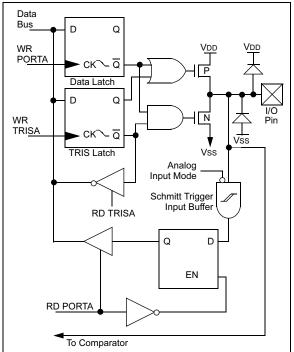
REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)

ER 4-5:	PIRT REGI	SIER (AL	DRESS 0	СН)								
	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0				
		CMIF		—	_							
	bit 7							bit 0				
bit 7	Unimplemented: Read as '0'											
bit 6	CMIF: Com	parator Inte	errupt Flag b	it								
	1 = Compai	rator input h	nas changed	l								
	0 = Compai	rator input h	nas not chan	iged								
bit 5-0	Unimpleme	ented: Rea	d as '0'									
	Legend:											
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'				
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown				

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

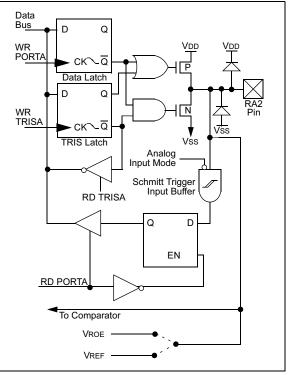
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

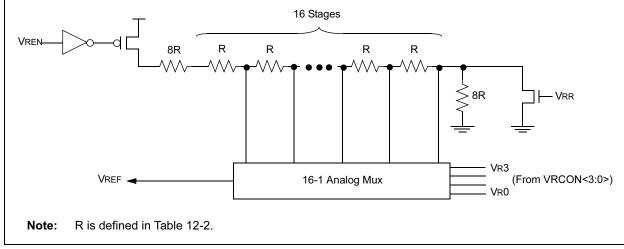
8.0 **VOLTAGE REFERENCE** MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Register 8-1. The block diagram is given in Figure 8-1.

8.1 **Configuring the Voltage Reference**

The Voltage Reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD


The setting time of the Voltage Reference must be considered when changing the VREF output (Table 12-1). Example 8-1 shows an example of how to configure the Voltage Reference for an output voltage of 1.25V with VDD = 5.0V.

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	VREN	VROE	Vrr	—	VR3	VR2	VR1	VR0				
	bit 7							bit 0				
bit 7		Enable ircuit powere	od on									
		-	ed down, no	IDD drain								
bit 6		VROE: VREF Output Enable										
		s output on F	RA2 pin ed from RA2	2 nin								
bit 5		Range sele		2 pm								
bit o	1 = Low Ra											
	0 = High R	ange										
bit 4	Unimplem	ented: Rea	d as '0'									
bit 3-0				VR [3:0] ≤ 1	5							
			(VR<3:0>/ 2 1/4 * Voo +	4) * VDD (VR<3:0>/ 3	2) * \/חח							
		- 0. VILLI -		(111-0.0-7-0	2) 100							
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'				
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown				
8-1:	VOLTAGE	REFERE		K DIAGRA	M							
			16 \$	Stages								
\sim		_			_	_						
$-\!$	에드 8R	R	R	R	R							
		<u>\</u>				• •						

REGISTER 8-1: VRCON REGISTER(ADDRESS 9Fh)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 8-

9.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD (ADDRESS 2007h)

CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾		BODEN	CP1	CP0 ⁽²⁾	PWRTE	WDTE	F0SC1	F0SC0
bit 13	ļ	<u> </u>	ļļ		ļ		<u> </u>	<u></u>	<u>I</u>	<u></u>	<u> </u>	ļ	bit 0
bit 13-8, CP<1:0>: Code protection bit pairs ⁽²⁾ 5-4: Code protection for 2K program memory 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected 00 = 0000h-07FFh code protected Code protection for 1K program memory 11 = Program memory code protection off 10 = Program memory code protected 00 = 0000h-03FFh code protected 00 = 0000h-03FFh code protected Code protection for 0.5K program memory 11 = Program memory code protection off 10 = Program memory code protection off													
		0	m memo -01FFh c			on off							
bit 7			nted: Re	-									
bit 6	BOI	DEN: Br	own-out l	Reset E	nable bit	(1)							
		BOR en BOR dis											
bit 3	1 =	RTE : Po PWRT o PWRT e		īmer Er	able bit ⁽	1, 3)							
bit 2	1 =	TE: Wat WDT en WDT dis		mer Ena	able bit								
bit 1-0	 FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Detect Reset is 												
		2: Al lis	ted.		-		e given the Power-up T			nable the c	code prot	tection s	cheme
Legend R = Re	l: adable b	it		W =	Writable	bit	U =	Unimple	emented	bit, read a	s '0'		

9.5 Interrupts

The PIC16C62X has 4 sources of interrupt:

- External interrupt RB0/INT
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB<7:4>)
- · Comparator interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine, as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

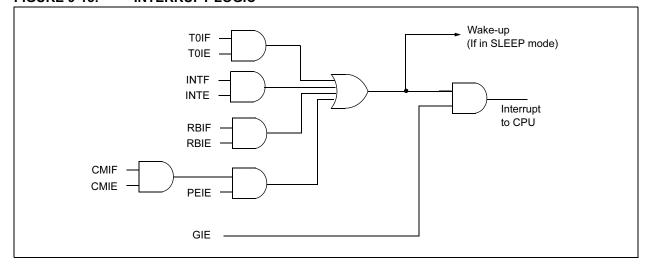

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h.

FIGURE 9-15: INTERRUPT LOGIC

Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 9-16). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

RLF	Rotate	Left f thr	oua	h Car	rv		
Syntax:	[label]	RLF	f,d				
Operands:	0 ≤ f ≤ 1 d ∈ [0,1						
Operation:	See des	scription I	belov	N			
Status Affected:	С						
Encoding:	00	1101	df	ff	ffff		
escription:	rotated the Carr is place 1, the re	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Vords:	1						
Cycles:	1						
xample	RLF	REG1,	0				
	Before I After Ins	nstructio REG1 C struction REG1 W	n = = =	1110 0 1110 1100			
		С	=	1			

RRF	Rotate R	ight f th	nroug	gh Ca	arry				
Syntax:	[label]	RRF f	,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	See desc	ription b	elow	'					
Status Affected:	С								
Encoding:	00	1100	df	ff	ffff				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
		; _▶	Regis	ter f	}				
Words:	1								
Cycles:	1								
Example	RRF		REG 0	61,					
	Before In	structior	ı						
		REG1 C	= =	1110 0	0110				
	After Inst								
	1	REG1 W C	= = =	1110 0111 0					

SLEEP

VIII						
Syntax:	[label]	SLEEF	D			
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow V \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow PD \end{array}$	T presca	aler,			
Status Affected:	TO, PD					
Encoding:	00	0000	0110	0011		
Description:	The power-down STATUS bit, PD is cleared. Time-out STATUS bit, TO is set. Watch- dog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 9.8 for more details.					
Words:	1					
Cycles:	1					
Example:	SLEEP					

SWAPF	Swap Ni	bbles in	f			
Syntax:	[label]	SWAPF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	27				
Operation:	(f<3:0>) - (f<7:4>) -		<i>,</i> .			
Status Affected:	None					
Encoding:	00	1110	dfff	ffff		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF	REG,	0			
	Before Instruction					
		REG1	= (DxA5		
	After Inst	ruction				
		REG1 W		0xA5 0x5A		

TRIS	Load TRIS Register					
Syntax:	[<i>label</i>] TRIS f					
Operands:	$5 \leq f \leq 7$					
Operation:	$(W) \rightarrow TRIS$ register f;					
Status Affected:	None					
Encoding:	00 0000 0110 Offf					
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.					
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.					

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i> XORLW k]
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Encoding:	11 1010 kkkk kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	XORLW 0xAF
	Before Instruction
	W = 0xB5
	After Instruction
	W = 0x1A
XORWF	Exclusive OR W with f
Syntax:	
- ,	[<i>label</i>] XORWF f,d
Operands:	$\begin{bmatrix} \text{label} \end{bmatrix} \text{ XORWF} f,d$ $0 \le f \le 127$ $d \in [0,1]$
-	$0 \le f \le 127$
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	$0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest)
Operands: Operation: Status Affected:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. \ (f) \rightarrow (dest) \\ Z \end{array}$
Operands: Operation: Status Affected: Encoding:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG & = & 0xAF \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{llllllllllllllllllllllllllllllllllll$

NOTES:

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	dard O	perati	ng Con	ditions (unless otherwise stated)
PIC16C	62X		Opera	ating te	empera		$\begin{array}{ll} 0^{\circ}C & \leq TA \leq +85^{\circ}C \text{ for industrial and} \\ 0^{\circ}C & \leq TA \leq +70^{\circ}C \text{ for commercial and} \\ 0^{\circ}C & \leq TA \leq +125^{\circ}C \text{ for extended} \end{array}$
PIC16L			Standard Operating Conditions (unless otherwise statOperating temperature -40° C \leq TA \leq +85°C for industria 0° C \leq TA \leq +70°C for commercian -40° C \leq TA \leq +125°C for extendedOperating voltage VDD range is the PIC16C62X range.				
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ BOD enabled, VDD = 5.0V VDD = 4.0V VDD = 4.0V VDD=3.0V
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	 	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC	TERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise	
D031		with Schmitt Trigger input	Vss		0.2VDD	V		
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)	
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V		
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V		
	Vih	Input High Voltage						
		I/O ports						
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V, otherwise	
			0.25 VDD + 0.8		Vdd			
D041		with Schmitt Trigger input	0.8 VDD		Vdd			
D042		MCLR RA4/T0CKI	0.8 VDD	—	Vdd	V		
D043		OSC1 (XT, HS and LP)	0.7 Vdd	—	Vdd	V		
D043A		OSC1 (in RC mode)	0.9 VDD				(Note 1)	
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μA	VDD = 5.0V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2, 3)						
		I/O ports (except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D060		PORTA	—	—	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance	
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \le VPIN \le VDD$	
D063		OSC1, MCLR	_	—	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	Vol	Output Low Voltage						
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C	
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C	
D083		OSC2/CLKOUT (RC only)	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C	
					0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C	
	Vон	Output High Voltage ⁽³⁾						
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C	
			VDD-0.7	—	—	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C	
D092		OSC2/CLKOUT (RC only)	VDD-0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C	
			VDD-0.7	_	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°C	
*D150	Vod	Open Drain High Voltage			8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins						
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.	
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF		
		parameters are characterized but not	<u> </u>	L	~~	۳.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

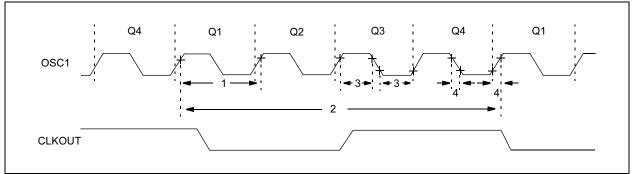
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.


6: Commercial temperature range only.

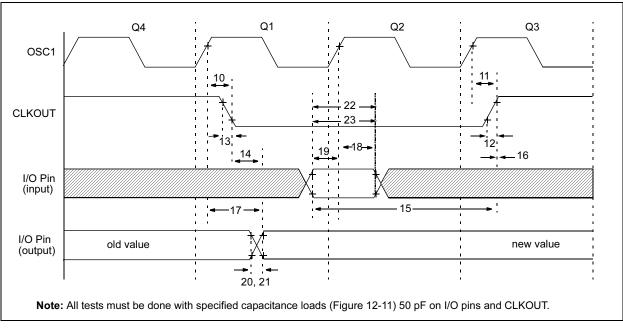
7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

PIC16C62X

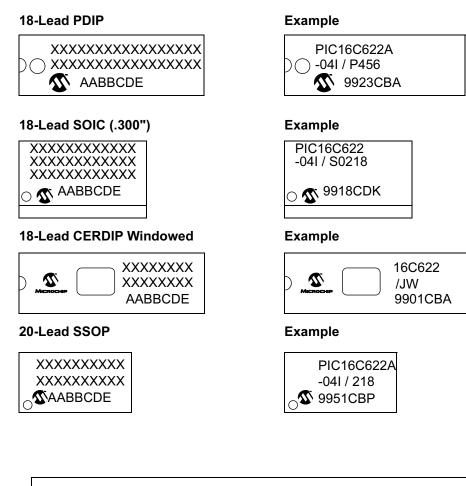
12.9 Timing Diagrams and Specifications

FIGURE 12-12: EXTERNAL CLOCK TIMING

TABLE 12-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	4	MHz	XT and RC Osc mode, VDD=5.0V
			DC	_	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	DC	—	4	MHz	RC Osc mode, VDD=5.0V
			0.1	—	4	MHz	XT Osc mode
			1	—	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	—	_	ns	XT and RC Osc mode
			50	—	—	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250	—	_	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
2	TCY	Instruction Cycle Time ⁽¹⁾	1.0	Fosc/4	DC	μS	Tcys=Fosc/4
3*	TosL,	External Clock in (OSC1) High or	100*	—	_	ns	XT oscillator, Tosc L/H duty cycle
	TosH	Low Time	2*	—	—	μs	LP oscillator, Tosc L/H duty cycle
			20*	_	—	ns	HS oscillator, Tosc L/H duty cycle
4*	TosR,	External Clock in (OSC1) Rise or	25*	_	_	ns	XT oscillator
	TosF	Fall Time	50*	—	—	ns	LP oscillator
			15*	—	—	ns	HS oscillator

2: * These parameters are characterized but not tested.


3: † Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

14.1 Package Marking Information

Legend	d: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.

* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out, although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. RESET vector is changed to 0000h.
- RESET of all registers is revisited. Five different RESET (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt-onchange feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON STATUS register is added with a Poweron-Reset (POR) STATUS bit and a Brown-out Reset STATUS bit (BOD).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset reset has been added.
- 20. Common RAM registers F0h-FFh implemented in bank1.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to 0000h.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device Frequency Range Temperature Range Device PIC16C62X: VDD range 3.0 PIC16C62XT: VDD range 3.0 PIC16C62XX: VDD range 3.0 PIC16C622XI: VDD range 3.0 PIC16LC62XX: VDD range 3.0 PIC16C622XI: VDD range 3.0 PIC16C7620A: VDD range 3.0 PIC16C	<u>/XX</u>	<u>ka xxx</u>	Examples:
$\begin{array}{rcl} \mbox{PiC16C62XT: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 2} \\ \mbox{PiC16LC62XT: VDD range 2} \\ \mbox{PiC16LC62XA: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\ \mbox{PiC16CR620A: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\ $	Package	kage Pattern	 a) PIC16C621A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
04 4 MHz (XT and RC os 20 20 20 MHz (HS osc) Temperature Range - I -40°C to +70°C I -40°C to +85°C E -40°C to +125°C Package P Package P SO = SO = SO = SO = SOP (Gull Wing SS = SOP (209 mil) =	0V to 6.0V (Tap .0V to 5.5V 3.0V to 5.5V (Ta 5.5V to 6.0V 2.5V to 6.0V (Ta 2.5V to 5.5V 2.5V to 5.5V (Ta 2.5V to 5.5V (Ta 2.5V to 5.5V) 2.5V to 5.5V (Ta 2.5V to 5.5V)	.0V (Tape and Reel) .5V 5.5V (Tape and Reel) .0V 6.0V (Tape and Reel) 5.5V 5.5V (Tape and Reel) 5.5V 5.5V (Tape and Reel) 0.5.5V	b) PIC16LC622-04I/SO = Industrial temp., SOIC package, 200 kHz, extended VDD limits.
Package P = PDIP SO = SOIC (Gull Wing SS = SSOP (209 mil)	c)		
SO = SOIC (Gull Wing SS = SSOP (209 mil)			
		nil body)	
Pattern 3-Digit Pattern Code for QT	P (blank otherw	k otherwise)	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.