Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	80 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc621-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16C620 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C621 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C622 ⁽³⁾	2.5 - 6.0	See Note 1	0.9
PIC16C620A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16CR620A ⁽²⁾	2.5 - 5.5	See Note 1	0.7
PIC16C621A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7
PIC16C622A ⁽⁴⁾	2.7 - 5.5	See Note 1	0.7

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.

4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.

1.0 GENERAL DESCRIPTION

The PIC16C62X devices are 18 and 20-Pin ROM/ EPROM-based members of the versatile PICmicro[®] family of low cost, high performance, CMOS, fullystatic, 8-bit microcontrollers.

All PICmicro microcontrollers employ an advanced RISC architecture. The PIC16C62X devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C620A, PIC16C621A and PIC16CR620A have 96 bytes of RAM. The PIC16C622(A) has 128 bytes of RAM. Each device has 13 I/O pins and an 8-bit timer/counter with an 8-bit programmable prescaler. In addition, the PIC16C62X adds two analog comparators with a programmable on-chip voltage reference module. The comparator module is ideally suited for applications requiring a low cost analog interface (e.g., battery chargers, threshold detectors, white goods controllers, etc).

PIC16C62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock- up.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost effective One-Time-Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C62X midrange microcontroller families.

A simplified block diagram of the PIC16C62X is shown in Figure 3-1.

The PIC16C62X series fits perfectly in applications ranging from battery chargers to low power remote sensors. The EPROM technology makes

customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C62X very versatile.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to PIC16C62X family of devices (Appendix B). The PIC16C62X family fills the niche for users wanting to migrate up from the PIC16C5X family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C62X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. Third Party "C" compilers are also available.

NOTES:

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 512 x 14 (0000h - 01FFh) for the PIC16C620(A) and PIC16CR620, 1K x 14 (0000h - 03FFh) for the PIC16C621(A) and 2K x 14 (0000h - 07FFh) for the PIC16C622(A) are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space (PIC16C621(A)) or 2K x 14 space (PIC16C622(A)). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C620/PIC16C620A/

PIC16CR620A

FIGURE 4-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C621/PIC16C621A

FIGURE 4-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16C622/PIC16C622A

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF
	bit 7			<u>.</u>		<u>.</u>		bit 0
bit 7	GIE: Globa	I Interrupt E	nable bit					
	1 = Enables	s all un-mas	sked interrup	ots				
1.11.0		s all interru	pts					
0 110	PEIE: Perip		upt Enable i	DIT 	-			
	1 = Enables 0 = Disable	s all un-mas	sked periphe eral interrun	eral interrupt	S			
bit 5		0 Overflow	Interrunt En	able bit				
bit o	1 = Enables	s the TMR0	interrupt					
	0 = Disable	s the TMR) interrupt					
bit 4	INTE: RB0/	INT Externa	al Interrupt E	Enable bit				
	1 = Enables	s the RB0/I	NT external	interrupt				
	0 = Disable	s the RB0/I	NT external	interrupt				
bit 3	RBIE: RB F	ort Change	Interrupt E	nable bit				
	1 = Enables	s the RB po	rt change in	iterrupt				
L:4 0			oft change in	iterrupi				
DIL ∠		J OVernow i		g Dit	- ared in coff	+		
	1 = TMR0 r 0 = TMR0 r	register did	not overflow	(ที่มีประ มีฮ มีฮ /	aleu ili son	ware		
bit 1	INTF: RB0/	INT Externa	al Interrupt F	-lag bit				
	1 = The RB	30/INT exter	nal interrup	t occurred (n	nust be clea	ared in softw	are)	
	0 = The RB	30/INT exter	nal interrupt	t did not occ	ur			
bit 0	RBIF : RB F	ort Change	Interrupt Fl	lag bit				
	1 = When a	at least one	of the RB<7	':4> pins cha	anged state	(must be cle	ared in soft	ware)
	0 = None o	f the RB<1	4> pins nave	e changea s	tate			
	Larandi							
	Legend:							

REGISTER 4-3:	INTCON REGISTER (ADDRESS 0BH OR 8BH)	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOR is unknown on Power-on Reset. It								
	must then be set by the user and checked								
	on subsequent RESETS to see if BOR is								
	cleared, indicating a brown-out has								
	occurred. The $\overline{\text{BOR}}$ STATUS bit is a "don't								
	care" and is not necessarily predictable if								
	the brown-out circuit is disabled (by								
	programming BODEN bit in the								
	Configuration word).								

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset STATUS bit

- 1 = No Power-on Reset occurred
- 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR**: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).

7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

TABLE 7-1 :	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
--------------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT			CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		CMIF		_	_			_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0
85h	TRISA		_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

-

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see

DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	—	—
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded cells are not used by the Watchdog Timer.

Note: – = Unimplemented location, read as "0"

+ = Reserved for future use

TABLE 10-2:	PIC16C62X INSTRUCTION SET
-------------	---------------------------

Mnemonic,		Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED I	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	_					-	-
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND COI	NTROL OPERATIONS	-	-				-	
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0			
Status Affected:	None	Status Affected:	None			
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff			
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the			
Words:	1		next instruction is skipped.			
Cycles:	1		tion fetched during the current			
Example	BCF FLAG_REG, 7		instruction execution is discarded,			
	Before Instruction FLAG REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.			
	After Instruction	Words:	1			
	FLAG REG = 0x47	Cycles:	1(2)			
	_	Example	HERE BTFSC FLAG,1			
BSF	Bit Set f		TRUE • DE			
Syntax:	[<i>label</i>]BSF f,b		•			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE			
Operation:	$1 \rightarrow (f \le b >)$		After Instruction			
Status Affected:	None		PC = address TRUE			
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,			
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE			
Words:	1					
Cycles:	1					
Example	BSF FLAG_REG, 7					

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f
Syntax:	[label] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	None	Status Affected:	Z
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
	If the result is 0, the next instruc-	Words:	1
	discarded. A NOP is executed	Cycles:	1
	instead making it a two-cycle	Example	IORWF RESULT, 0
	Instruction.		Before Instruction
vvoras:	1		$\begin{array}{rcl} RESULI &= & 0x13 \\ W &= & 0x91 \end{array}$
Cycles: Example	1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		After Instruction $\begin{array}{rcl} RESULT &= & 0x13 \\ W & = & 0x93 \\ Z & = & 1 \end{array}$
	Before Instruction	MOVLW	Move Literal to W
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k
	CNT = CNT + 1	Operands:	$0 \le k \le 255$
	if $CNT = 0$, PC = address CONTINUE	Operation:	$k \rightarrow (W)$
	if $CNT \neq 0$,	Status Affected:	None
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Syntax:	[<i>label</i>] IORLW k	Words:	1
Operands:	$0 \le k \le 255$	Cycles:	1
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A
Status Affected:	Z	·	After Instruction
Encoding:	11 1000 kkkk kkkk		W = 0x5A
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example	IORLW 0x35		
	Before Instruction W = 0x9A		
	After Instruction		

W = Z =

0xBF 1

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status Affected:	C, DC, Z	Operation: Status	(f) - (W) \rightarrow (dest) C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	000010dfffffffSubtract (2's complement method)W register from register 'f'. If 'd' is 0,the result is stored in the W register.If 'd' is 1, the result is stored head in
Words:	1		register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 $C = ?$		Before Instruction
	After Instruction		REG1= 3
	W = 1		W = 2 C = ?
Example 2:	Before Instruction		After Instruction
Example 2.	W = 2 $C = ?$		REG1= 1 W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0 C = 1; result is zero		REG1= 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3 C = ?		After Instruction REG1= 0
	After Instruction		W = 2
	W = 0xFF	Example 3	C = 1; result is zero Before Instruction
	C – 0, result is negative		REG1= 1 W = 2 C = ?
			After Instruction
			REG1= 0xFF W = 2 C = 0; result is negative

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

11.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

11.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

11.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

11.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA				dard O ating te	perati empera	ng Con ature -4 -4	ditions (unless otherwise stated) 40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and 40° C \leq TA \leq +125°C for extended
PIC16LC62XA				dard O ating te	perati empera	ng Con ature -4 -4	$\begin{array}{ll} \mbox{ditions (unless otherwise stated)} \\ 10^{\circ}C &\leq TA \leq +85^{\circ}C \mbox{ for industrial and} \\ 0^{\circ}C &\leq TA \leq +70^{\circ}C \mbox{ for commercial and} \\ 0^{\circ}C &\leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D010	IDD	Supply Current ^(2, 4)	_	1.2 0.4	2.0 1.2	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode (Note 4)*
				1.0 4.0	2.0 6.0	mA mA	Fosc = 10 MHz, VDD = 3.0V, WDT dis- abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis-
			-	4.0 35	7.0 70	mA μA	abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis- abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled. LP mode
D010	IDD	Supply Current ⁽²⁾	_	1.2	2.0 1.1	mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4)
			_	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT dis- abled, LP mode
D020	IPD	Power-down Current ⁽³⁾	 		2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V VDD = 5.5V Extended Temp.
D020	IPD	Power-down Current ⁽³⁾	 	 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS				n dard erating	Oper ation	ating (erature	Conditions (unless otherwise stated) e 0°C \leq TA \leq +70°C for commercial
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	3.0		5.5	V	Fosc = DC to 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	_	Vss		V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *			V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared
D010	IDD	Supply Current ^(2,4)		1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode. (Note 4)
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode. (Note 6)
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled,
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*,
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode
D020	IPD	Power Down Current ⁽³⁾		_	2.2	μA	VDD = 3.0V
			—	—	5.0	μA	$VDD = 4.5V^*$
			—	—	9.0	μA	VDD = 5.5V
D000	ALMOT	WDT Current(5)	_	_	10	μΑ	
0022		WDT Current ^(*)	_	6.0	10	μΑ	VDD - 4.0V (125°C)
D022A	AIBOR	Brown-out Reset Current ⁽⁵⁾	_	75	125	μA	BOD enabled, VDD = $5.0V$
D023		Comparator Current for each Comparator ⁽⁵⁾	—	30	60	μA	$V_{DD} = 4.0V$
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V
	ΔIEE Write	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA	
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE VDD = Vcc
		Standby Current	—		100	μA	VCC = 3.0V, EE VDD = VCC
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		XT Oscillator Operating Frequency	0		4	MH7	All temperatures
		HS Oscillator Operating Frequency	0	_	20	MHz	All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP

mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
For RC OSC configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)50
Р
Package Marking Information
Packaging Information
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit79
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register
Port RB Interrupt
PORTA
PORTB
Power Control/Status Register (PCON)
Power-Down Mode (SLEEP)
Power-On Reset (POR)
Power-up Timer (PWRT)
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices
R
RC Oscillator
Reset49
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

0	
Serialized Quick-Turnaround-Production (SQTP) De	vices 7
SLEEP Instruction	71
Software Simulator (MPLAB SIM)	76
Software Simulator (MPLAB SIM30)	76
Special Features of the CPU	45
Special Function Registers	17
Stack	23
Status Register	18
SUBLW Instruction	72
SUBWF Instruction	72
SWAPF Instruction	73

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	35
Timing Diagrams and Specifications	104
TMR0 Interrupt	
TRIS Instruction	73
TRISA	
TRISB	

v

Voltage Reference Module VRCON Register	43 43
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	.73