

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc622-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all
	inputs. The digital inputs are disabled and
	the comparator inputs are forced to ground
	to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches
MOVLW	0X07	;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x1F	;Value used to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are always
		;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 12-2).

7.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-3: COMPARATOR OUTPUT BLOCK DIAGRAM

7.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register								
	(C1OUT or C2OUT) should occur when a								
	read operation is being executed (start of								
	the Q2 cycle), then the CMIF (PIR1<6>)								
	interrupt flag may not get set.								

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

7.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will

Vdd ∆Vt = 0.6V RIC Rs < 10K Δικ **I**LEAKAGE CPIN VT = 0.6V ±500 nA 5 pF Vss Input Capacitance Legend CPIN = Threshold Voltage Vт = Leakage Current at the pin due to various junctions ILEAKAGE = = Interconnect Resistance RIC Rs = Source Impedance Analog Voltage VA =

FIGURE 7-4: ANALOG INPUT MODEL

wake up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

7.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the comparator module to be in the comparator RESET mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

7.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A maximum source impedance of $10 \ k\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 7-1 :	REGISTERS ASSOCIATED WITH COMPARATOR MODULE
--------------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT			CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1		CMIF		_	_			_	-0	-0
8Ch	PIE1	_	CMIE	_	_	_	_	_	_	-0	-0
85h	TRISA		_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"

-

9.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD (ADDRESS 2007h)

CP1	CP0 (2)	CP1	CP0 (2)	CP1	CP0 (2)		BODEN	CP1	CP0 ⁽²⁾	PWRTE	WDTE	F0SC1	F0SC0
bit 13							Į		ļ		<u> </u>	ļ	bit 0
bit 13-8 5-4:	 8. CP<1:0>: Code protection bit pairs ⁽²⁾ Code protection for 2K program memory 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected 00 = 0000h-07FFh code protected Code protection for 1K program memory 11 = Program memory code protection off 10 = Program memory code protection off 01 = 0200h-03FFh code protected 00 = 0000h-03FFh code protected 												
	Code protection for 0.5K program memory 11 = Program memory code protection off 10 = Program memory code protection off 01 = Program memory code protection off 00 = 0000h-01FFh code protected												
bit 7	Uniı	npleme	e nted : Re	ead as 'C)'								
bit 6	BOI	DEN: Br	own-out	Reset E	nable bit	(1)							
	1 = 0 =	BOR en BOR dis	abled sabled										
bit 3	PWI 1 = 0 =	RTE : Po PWRT c PWRT e	ower-up T disabled enabled	īmer En	able bit	(1, 3)							
bit 2	WD 1 = ' 0 = '	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 1-0	FOS	C1:FO	SCO: Oso	cillator S	election	bits							
	11 - 10 = 01 = 00 =	11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator											
	Note	 Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Detect Reset is enabled. All of the CR 4102 point have to be given the source value to enable the source value to enable the source value to be given the source value to enable the source value to be addressed on the source value											
		lis 3: Ui	ited. nprogram	nmed pa	rts defai	ult the F	Power-up T	imer dis	abled.				
Logond	1.												
R = Re	ı. adable b	it		W = 1	Writable	bit	U =	Unimple	emented	bit, read a	s '0'		

9.3 RESET

The PIC16C62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOR)

Some registers are not affected in any RESET condition Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset,

MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 9-2. These bits are used in software to determine the nature of the RESET. See Table 9-5 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 9-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-5 for pulse width specification.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine			
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$			
Operation:	0 ≤ b < 7 skip if (f) = 1	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>			
Encoding:		Status Affected:	None			
Encouring.	If hit 'h' in register 'f' is '1', then the	Encoding:	10 Okkk kkkk kkkk			
Description.	next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is			
Words:	1		a two-cycle instruction.			
Cycles:	1(2)	vvords:	1			
Example	HERE BTFSS FLAG,1	Cycles:	2			
	TRUE • DE	Example	HERE CALL THER E			
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE		PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			
		CLRF	Clear f			
		Syntax:	[<i>label</i>] CLRF f			
		Operands:	$0 \le f \le 127$			
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
		Status Affected:	Z			
		Encoding:	00 0001 1fff ffff			
		Description:	The contents of register 'f' are cleared and the Z bit is set.			
		Words:	1			
		Cycles:	1			
		Example	CLRF FLAG_REG			
			Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1			

DECFSZ	Decrement f, Skip if 0									
Syntax:	[label] DECFSZ f,d									
Operands:	$0 \le f \le 127$ $d \in [0,1]$									
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0									
Status Affected:	None									
Encoding:	00 1011 dfff ffff									
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction									
Words:	1									
Cycles:	1(2)									
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • •									
	After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1									
GOTO	Unconditional Branch									
Syntax:	[<i>label</i>] GOTO k									
Operands:	$0 \leq k \leq 2047$									
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>									
Status Affected:	None									
Encoding:	10 1kkk kkkk kkkk									
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.									
Words:	1									
Cycles:	2									
Example	GOTO THERE									
	After Instruction PC = Address THERE									

INCF	Increment f								
Syntax:	[label] INCF f,d								
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]								
Operation:	(f) + 1 \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 1010 dfff ffff								
Description:	I ne contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
Words:	1								
Cycles:	1								
Example	INCF CNT, 1								
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1								

11.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

11.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

11.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

11.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

11.18 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8-, 14-, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the supercapacitor circuit, and jumpers allow onboard hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

11.19 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C	62X		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and						
	OULA		Opera	-40° C \leq TA \leq +70^{\circ}C for commercial -40°C \leq TA \leq +125°C for extended Operating voltage VDD range is the PIC16C62X range.					
Param . No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D022 D022A D023 D023A D022A D022A D022A D023	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIWDT ΔIBOR ΔICOM P	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	 	6.0 350 — 6.0 350 —	20 25 425 100 300 15 425 100	μΑ μΑ μΑ μΑ μΑ μΑ	$VDD=4.0V$ $(125^{\circ}C)$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$ $BOD \text{ enabled, } VDD = 5.0V$ $VDD = 3.0V$		
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	_	300	μA	VDD = 3.0V		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

PIC16C	62XA	Stand Opera	dard O ating te	perati empera	n g Con iture -4 -4	ditions (unless otherwise stated) $10^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $10^{\circ}C \leq TA \leq +125^{\circ}C$ for extended	
PIC16L	C62XA	Stand Opera	dard O ating te	perati empera	ng Con ature -4 -4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D022	ΔİWDT	WDT Current ⁽⁵⁾	—	6.0	10 12	μA μA	VDD = 4.0V (125°C)
D022A	Δ IBOR	Brown-out Reset Current ⁽⁵⁾	—	75	125	μA	BOD enabled, VDD = 5.0V
D023		Comparator Current for each Comparator ⁽⁵⁾	_	30	60	μA	VDD = 4.0V
D023A	ΔIVREF	VREF Current ⁽³⁾	_	80	135	μA	VDD = 4.0V
D022	ΔI WDT	WDT Current ⁽⁵⁾	—	6.0	10	μΑ	VDD=4.0V
DOODA	41	Descent Descet Operation (5)		75	12	μA	$\frac{(125^{\circ}C)}{200} = 5.017$
D022A		Brown-out Reset Current ^(e)		75	125	μΑ	BOD enabled, $VDD = 5.0V$
D023	AICOMP	Comparator Current for each		30	60	μΑ	VDD - 4.0V
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures
		HS Oscillator Operating Frequency	0	—	20	MHZ	All temperatures
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures
		HS Oscillator Operating Frequency	0	_	4 20	MHZ MHZ	All temperatures All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended)

PIC16CR62XA-04 PIC16CR62XA-20			Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial and 40° C \leq TA \leq +125°C for extended									
PIC16LCR62XA-04				Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial and -40° C $\leq TA \leq +125^{\circ}$ C for extended								
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions					
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-7, 12-8, 12-9					
D001	Vdd	Supply Voltage	2.5	—	5.5	V	See Figures 12-7, 12-8, 12-9					
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5*	—	V	Device in SLEEP mode					
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	_	V	Device in SLEEP mode					
D003	VPOR	VDD start voltage to ensure Power-on Reset	-	Vss		V	See section on Power-on Reset for details					
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss		V	See section on Power-on Reset for details					
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details					
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	_	V/ms	See section on Power-on Reset for details					
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared					
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared					
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*					
			_	500	900	μA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)					
			_	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS mode, (Note 6)					
				4.0	7.0	mA	FOSC = 20 MHz, VDD = 5.5V, WD1 disabled*, HS					
				3.0	0.0 70		FOSC = 20 MHz VDD = 4.5 WDT disabled HS mode					
				55	10	μΛ	Fose = 32 kHz , VDD = 3.0V , WDT disabled, LP mode					
D010	IDD	Supply Current ⁽²⁾	-	1.2	1.7	mA	Fosc = 4.0 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)*					
			-	400	800	μA	Fosc = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode (Note 4)					
			—	35	70	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode					

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

			Standard Operating Conditions (unless otherwise stated)									
PIC16CR62XA-04 PIC16CR62XA-20				Operating temperature -40° C \leq TA \leq +85°C for industrial and								
				$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and								
				$-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended								
			Stand	Standard Operating Conditions (unless otherwise stated)								
PIC16LCR62XA-04			Opera	Operating temperature -40° C < Ta < +85^{\circ}C for industrial and								
			opora	ling ton	porat		0° C < TA < +70°C for commercial and					
						-40	1° C < TA < +125°C for extended					
Dorom	Sum	Characteristic	Min									
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions					
NU.	1	(2)			050							
D020	IPD	Power-down Current ⁽³⁾		200	950	nA	VDD = 3.0V					
				0.400	1.0	μΑ						
				0.600	2.2	μΑ	VDD - 5.5V					
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.					
D020	IPD	Power-down Current ⁽³⁾		200	850	nA	VDD = 2.5V					
				200	950	nA A	$VDD = 3.0V^{*}$					
				0.600	2.2	μΑ	VDD = 5.5V					
D aga		(5)		5.0	9.0	μΑ						
D022	Δ IWDT	WD1 Current ⁽³⁾		6.0	10	μA	VDD=4.0V					
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$					
DUZZA		Brown-out Reset Current(*)		75	125	μΑ	BOD enabled, $VDD = 5.0V$					
D023		Comparator Current for each		30	60	μΑ	VDD = 4.0V					
00234		Vere Current ⁽⁵⁾		80	125							
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V					
D022		wDT Current(**		6.0	10	μΑ	VDD-4.0V (125°C)					
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)					
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$					
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V					
D023A	Δ IVREF	VREF Current ⁽⁵⁾		80	135	μA	VDD = 4.0V					
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures					
1A	Fosc	LP Oscillator Operating Frequency	0		200	kHz	All temperatures					
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures					
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures					
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

PIC16C62X/C62XA/CR62XA				$\label{eq:standard} \begin{array}{ c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^\circ \text{C} & \leq \text{Ta} \leq +85^\circ \text{C} \text{ for industrial and} \\ & 0^\circ \text{C} & \leq \text{Ta} \leq +70^\circ \text{C} \text{ for commercial and} \\ & -40^\circ \text{C} & \leq \text{Ta} \leq +125^\circ \text{C} \text{ for extended} \\ \hline \end{array}$							
PIC16LC62X/LC62XA/LCR62XA				Standard Operating Conditions (unless otherwise stateOperating temperature -40° C \leq TA \leq +85°C for industria0°C \leq TA \leq +70°C for comment -40° C \leq TA \leq +125°C for extended							
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions				
	VIL	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	—	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise				
D031		with Schmitt Trigger input	Vss		0.2 VDD	V					
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss		0.2 VDD	V	(Note 1)				
D033		OSC1 (in XT and HS)	Vss	_	0.3 Vdd	V					
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V					
	VIL	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	-	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise				
D031		with Schmitt Trigger input	Vss	—	0.2 VDD	V					
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 Vdd	V	(Note 1)				
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V					
		OSC1 (in LP)	Vss	_	0.6 Vdd- 1.0	V					
	Vih	Input High Voltage									
		I/O ports									
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	VDD = 4.5V to 5.5V otherwise				
D041		with Schmitt Trigger input	0.8 VDD	_	VDD						
D042		MCLR RA4/T0CKI	0.8 Vdd	—	Vdd	V					
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	_	Vdd	V	(Note 1)				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins				Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Sym	Min	Тур ⁽¹⁾	Max	Units	Conditions		
Supply Voltage	Vdd	4.5	_	5.5	V	HS Option from 20 - 40 MHz		
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode		
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected		
Input Low Voltage OSC1	Vi∟	Vss	_	0.2VDD	V	HS mode, OSC1 externally driven		
Input High Voltage OSC1	Vih	0.8Vdd	_	Vdd	V	HS mode, OSC1 externally driven		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, MCLR = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)

AC CHARACTERISTICS All Pins Except Power Supply Pins				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic Sym Min			Typ ⁽¹⁾	Max	Units	Conditions		
External CLKIN Frequency	Fosc	20	_	40	MHz	HS mode, OSC1 externally driven		
External CLKIN Period	Tosc	25		50	ns	HS mode (40), OSC1 externally driven		
Clock in (OSC1) Low or High Time	TosL, TosH	6			ns	HS mode, OSC1 externally driven		
Clock in (OSC1) Rise or Fall Time	TosR, TosF	_	—	6.5	ns	HS mode, OSC1 externally driven		
OSC1↑ (Q1 cycle) to Port out valid	TosH2IoV	_		100	ns	—		
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	_	—	ns			

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-xx</u>	¥	<u>/xx</u>	xxx	E	xamples:
Device	Frequency Range	Temperature Range	Package	Pattern	a)	 PIC16C621A - 04/P 301 = Commercial temp PDIP package, 4 MHz, normal VDD limits, QT pattern #301.
Device Frequency Range	PIC16C6 PIC16C6 PIC16C6 PIC16LC PIC16LC PIC16LC PIC16LC PIC16LC PIC16CF PIC16CF PIC16CC PIC16LC 04 200 04 4 M 20 20 M	52X: VDD range 3.0 52X: VDD range 3.0 52XA: VDD range 3.0 52XA: VDD range 2.5 562XA: VDD range 2.5 572XA: VD rang	/ to 6.0V // to 6.0V (Tape 0V to 5.5V 0V to 5.5V (Taj 5V to 6.0V .5V to 6.0V (Taj .5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.5V to 5.5V 2.0V to 5.5V 2.0V to 5.5V (Taj .5V to 5.5V .5V to 5.5V (Taj .5V to 5.5V)	e and Reel) be and Reel) be and Reel) ape and Reel) ape and Reel) Tape and Reel))	 PIC16LC622- 04I/SO = Industrial temp., SOI package, 200 kHz, extended VDD limits.
emperature Range	e - = I = E =	0°C to +70°C -40°C to +85°C -40°C to +125°C				
Package	P = SO = SS = JW* =	PDIP SOIC (Gull Wing, SSOP (209 mil) Windowed CERD	, 300 mil body) NP			
Pattern	3-Digit Pa	attern Code for QTF	Optimize (blank otherwise)	se)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.