

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc622-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EPROM-Based 8-Bit CMOS Microcontrollers

Devices included in this data sheet:

Referred to collectively as PIC16C62X.

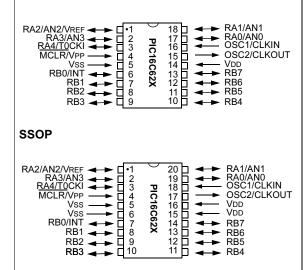
- PIC16C620 PIC16C620A
- PIC16C621 PIC16C621A
- PIC16C622 PIC16C622A
- PIC16CR620A

High Performance RISC CPU:

- Only 35 instructions to learn
- All single cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
 - DC 40 MHz clock input
 - DC 100 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C620	512	80
PIC16C620A	512	96
PIC16CR620A	512	96
PIC16C621	1K	80
PIC16C621A	1K	96
PIC16C622	2K	128
PIC16C622A	2K	128

· Interrupt capability


- 16 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative addressing modes

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs can be output signals
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagrams

PDIP, SOIC, Windowed CERDIP

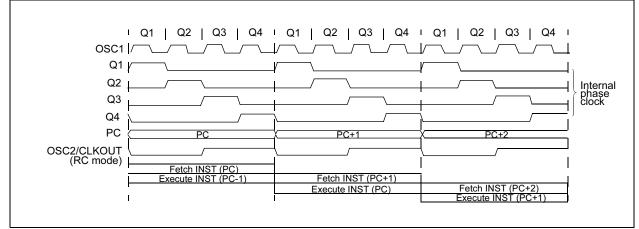
Special Microcontroller Features:

- · Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

CMOS Technology:

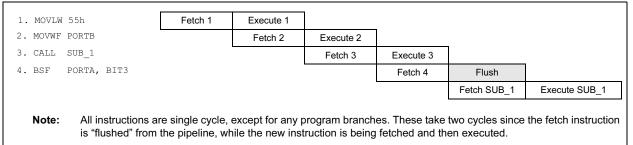
- Low power, high speed CMOS EPROM technology
- Fully static design
- · Wide operating range
 - 2.5V to 5.5V
- Commercial, industrial and extended temperature range
- Low power consumption
 - < 2.0 mA @ 5.0V, 4.0 MHz
 - 15 μA typical @ 3.0V, 32 kHz
 - < 1.0 μA typical standby current @ 3.0V

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

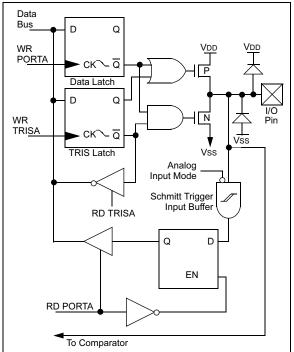
4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

5.0 I/O PORTS

The PIC16C62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers), which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

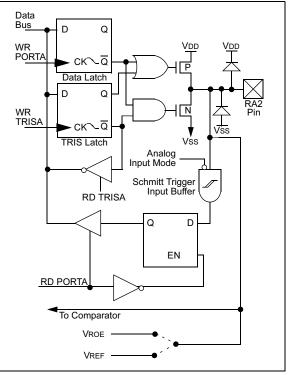
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note:	On RESET, the TRISA register is set to all					
	inputs. The digital inputs are disabled and					
	the comparator inputs are forced to ground					
	to reduce excess current consumption.					

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.


The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output and must be buffered prior to any external load. The user must configure TRISA<2> bit as an input and use high impedance loads.

In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

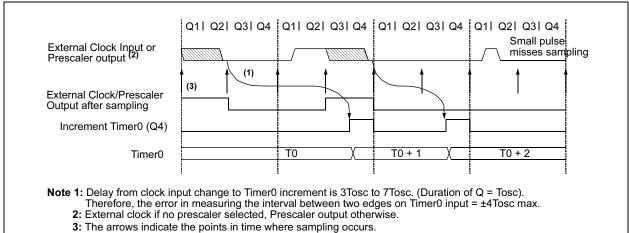
EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by setting ;output data latches	
MOVLW	0X07 ;Turn comparators off and		
MOVWF	CMCON	;enable pins for I/O ;functions	
BSF	STATUS, RPO	;Select Bank1	
MOVLW	0x1F	;Value used to initialize	
		;data direction	
MOVWF	TRISA	;Set RA<4:0> as inputs	
		;TRISA<7:5> are always	
		;read as '0'.	

FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN

6.2 Using Timer0 with External Clock

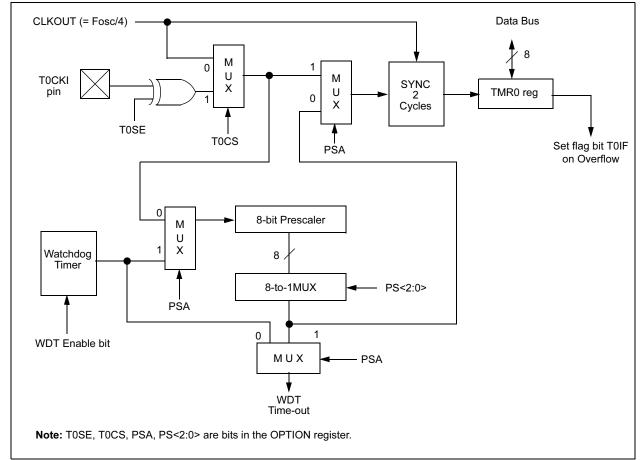
When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMR0 is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.



6.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

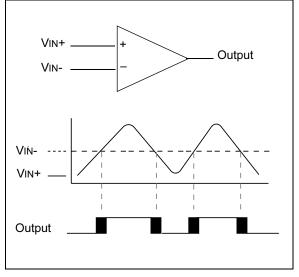
When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10µs delay
MOVF	CMCON,F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable


7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

9.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

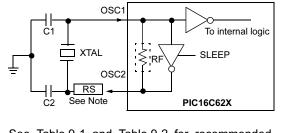
The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD (ADDRESS 2007h)

CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾	CP1	CP0 ⁽²⁾		BODEN	CP1	CP0 ⁽²⁾	PWRTE	WDTE	F0SC1	F0SC0
bit 13	ļ	<u> </u>	ļļ		ļ		<u> </u>	<u></u>	<u>I</u>	<u></u>	<u> </u>	ļ	bit 0
bit 13-8 5-4:	bit 13-8, CP<1:0>: Code protection bit pairs ⁽²⁾ 5-4: Code protection for 2K program memory 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected 00 = 0000h-07FFh code protected Code protection for 1K program memory 11 = Program memory code protection off 10 = Program memory code protected 01 = 0200h-03FFh code protected 02 = 0000h-03FFh code protected Code protection for 0.5K program memory 11 = Program memory code protected Code protection for 0.5K program memory 11 = Program memory code protection off 10 = Program memory code protection off												
		0	m memo -01FFh c			on off							
bit 7			nted: Re	-									
bit 6	BOI	DEN: Br	own-out l	Reset E	nable bit	(1)							
		BOR en BOR dis											
bit 3	1 =	RTE : Po PWRT o PWRT e		īmer Er	able bit ⁽	1, 3)							
bit 2	WDTE : Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled												
 bit 1-0 FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Detect Reset is enabled. 													
		2: Al lis	l of the C ted.		-		e given the Power-up T			nable the c	code prot	tection s	cheme
Legend R = Re	l: adable b	it		W =	Writable	bit	U =	Unimple	emented	bit, read a	s '0'		

9.2 Oscillator Configurations

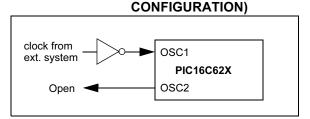
9.2.1 OSCILLATOR TYPES


The PIC16C62X devices can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-1). The PIC16C62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-2).


FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 9-1 and Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

R	anges Charao	21			
Mode	Freq	0562(C2)			
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	82 - 100 pF 15 - 68 pF 15 - 68 pF		
HS	8.0 MHz 16.0 MHz 🔨	10-68 pF 10-22 pF	10 - 68 pF 10 - 22 pF		
Higher capacitance increases the stability of the oscil- lator but also increases the start-up time. These walkes are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.					

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)		
LP	32 kHz	68 - 100 pF	68 - 100 pF		
	200 kHz	15 - 30 pF	15 - 30 pF		
хт	100 kHz	68 - 150 pF	150-300 pF		
	2 MHz	15 - 30 pF	15-30 pF		
	4 MHz	15 - 30 pF	15-30 pF		
HS	8 MHz	15-30 pF	^V 15 - 30 pF		
	10 MHz	15-30 pF	15 - 30 pF		
	20 MHz 🔨	15-30 pF	15 - 30 pF		
Higher capacitance, hereases the stability of the oscillator built also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.					

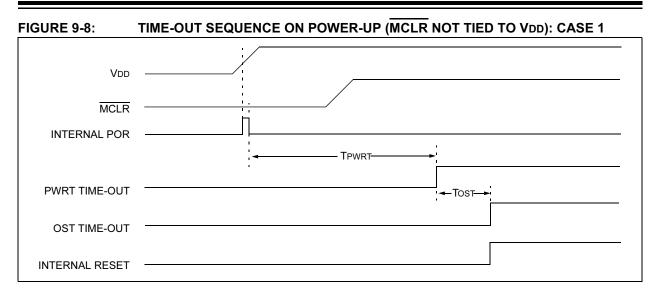


FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

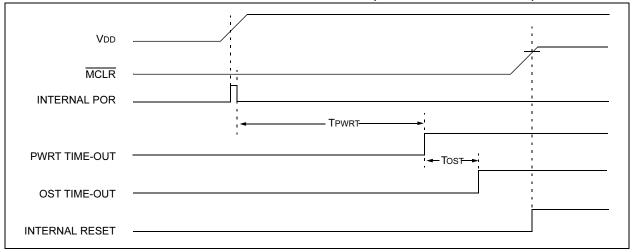
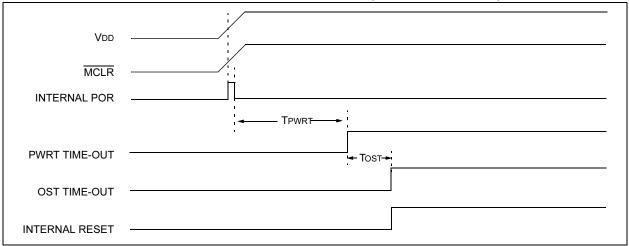
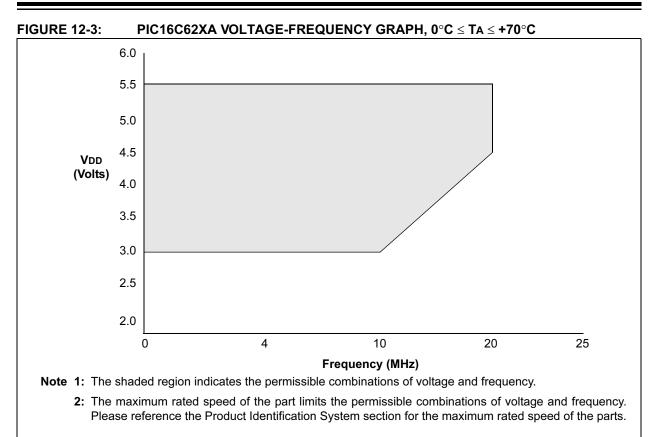



FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

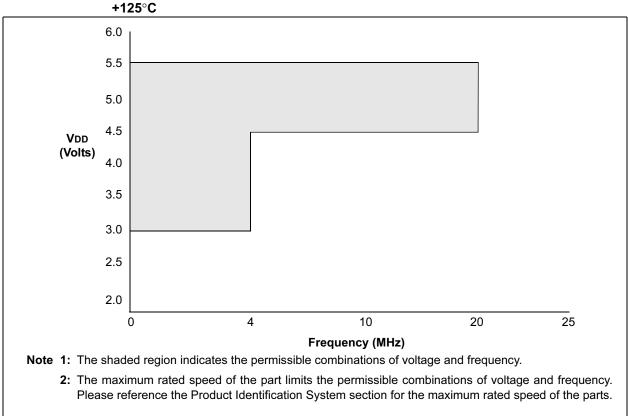
DECFSZ	Decrement f, Skip if 0					
Syntax:	[<i>label</i>] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0					
Status Affected:	None					
Encoding:	00 1011 dfff ffff					
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •					
	$\begin{array}{rcl} PC &=& address \ {\tt HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \ {\tt CONTINUE} \\ \mbox{if CNT} \neq& 0, \\ PC &=& address \ {\tt HERE} + 1 \\ \end{array}$					
GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \le k \le 2047$					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Encoding:	10 1kkk kkkk kkkk					
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.					
Words:	1					
Cycles:	2					
Example	GOTO THERE					
	After Instruction PC = Address THERE					

INCF	Increment f					
Syntax:	[<i>label</i>] INCF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 1010 dfff ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example	INCF CNT, 1					
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1					

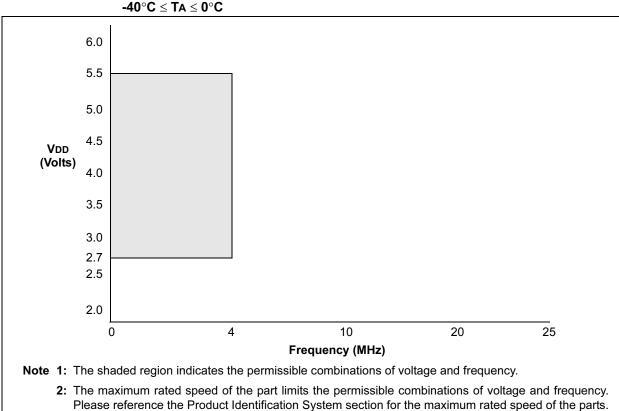
INCFSZ	Increment f, Skip if 0	IORWF	Inclusive OR W with f		
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORWF f,d		
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ d $\in [0,1]$		
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0	Operation:	(W) .OR. (f) \rightarrow (dest)		
Status Affected:	None	Status Affected:	Z		
Encoding:	00 1111 dfff ffff	Encoding:	00 0100 dfff ffff		
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.		
	If the result is 0, the next instruc- tion, which is already fetched, is	Words:	1		
	discarded. A NOP is executed	Cycles:	1		
	instead making it a two-cycle	Example	IORWF RESULT, 0		
Words: Cycles: Example	instruction. 1 1(2) HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		Before InstructionRESULT = $0x13$ W = $0x91$ After InstructionRESULT =RESULT = $0x13$ W = $0x93$ Z =1		
	• Before Instruction	MOVLW	Move Literal to W		
	PC = address HERE After Instruction	Syntax:	[<i>label</i>] MOVLW k		
	CNT = CNT + 1	Operands:	$0 \le k \le 255$		
	if CNT= 0, PC = address CONTINUE	Operation:	$k \rightarrow (W)$		
	if CNT≠ 0,	Status Affected:	None		
	PC = address HERE +1	Encoding:	11 00xx kkkk kkkk		
IORLW	Inclusive OR Literal with W	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.		
Syntax:	[<i>label</i>] IORLW k	Words:	1		
Operands:	$0 \le k \le 255$	Cycles:	1		
Operation:	(W) .OR. $k \rightarrow$ (W)	Example	MOVLW 0x5A		
Status Affected:	Z	Example	After Instruction		
Encoding:	11 1000 kkkk kkkk		W = 0x5A		
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	IORLW 0x35				
	Before Instruction W = 0x9A After Instruction W = 0xBE				

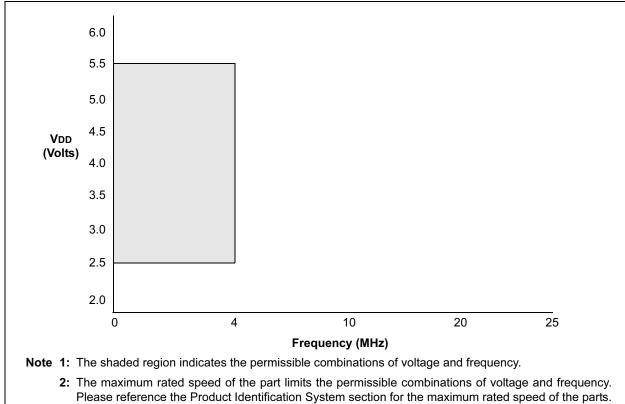

W = Z =

0xBF 1


SWAPF	Swap Ni	bbles in	f			
Syntax:	[<i>label</i>] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f<3:0>) - (f<7:4>) -		· · ·			
Status Affected:	None					
Encoding:	00	1110	dfff	ffff		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF	REG,	0			
	Before Instruction					
		REG1	= (DxA5		
	After Inst	ruction				
		REG1 W		0xA5 0x5A		

TRIS	Load TRIS Register					
Syntax:	[<i>label</i>] TRIS f					
Operands:	$5 \le f \le 7$					
Operation:	(W) \rightarrow TRIS register f;					
Status Affected:	None					
Encoding:	00 0000 0110 Offf					
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.					
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.					


XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i> XORLW k]
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Encoding:	11 1010 kkkk kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	XORLW 0xAF
	Before Instruction
	W = 0xB5
	After Instruction
	W = 0x1A
XORWF	Exclusive OR W with f
Syntax:	
- ,	[<i>label</i>] XORWF f,d
Operands:	$ \begin{bmatrix} \textit{label} \end{bmatrix} \text{ XORWF} f,d \\ 0 \le f \le 127 \\ d \in [0,1] $
-	$0 \le f \le 127$
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operands: Operation:	$0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest)
Operands: Operation: Status Affected:	$0 \le f \le 127$ $d \in [0,1]$ (W) .XOR. (f) \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) . XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is \\ stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .XOR. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0110 & dfff & ffff \\ \hline Exclusive OR the contents of the \\ W register with register 'f'. If 'd' is \\ 0, the result is stored in the W \\ register. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1 \\ XORWF & REG & 1 \\ \hline Before Instruction \\ \hline REG & = & 0xAF \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{array}{llllllllllllllllllllllllllllllllllll$


FIGURE 12-4: PIC16C62XA VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le Ta \le 0^{\circ}C$, $+70^{\circ}C \le Ta \le +125^{\circ}C$

12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended) PIC16C62X-20 (Commercial, Industrial, Extended) PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)

			Stand	dard O	perati	ng Con	ditions (unless otherwise stated)	
PIC16C62X			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
PIC16LC62X			Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq Ta \leq +85°C for industrial and 0° C \leq Ta \leq +70°C for commercial and -40° C \leq Ta \leq +125°C for extendedOperating voltage VDD range is the PIC16C62X range.					
Param . No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
D022 D022A D023 D023A D0222	ΔIWDT ΔIBOR ΔICOM P ΔIVREF ΔIVREF	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾ WDT Current ⁽⁵⁾		6.0 350 — 6.0	20 25 425 100 300	μΑ μΑ μΑ μΑ μΑ	VDD=4.0V $(125°C)$ $BOD enabled, VDD = 5.0V$ $VDD = 4.0V$ $VDD = 4.0V$ $VDD=3.0V$	
D022A D023 D023A	ΔIBOR ΔICOM P ΔIVREF	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾ VREF Current ⁽⁵⁾		350 —	425 100 300	μΑ μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V	
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures	
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0	 	200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	3.0	_	5.5	V	Fosc = DC to 20 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	_	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05 *	—	_	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Detect Voltage	3.65	4.0	4.35	V	BOREN configuration bit is cleared		
D010	IDD	Supply Current ^(2,4)	—	1.2	2.0	mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT Osc mode, (Note 4)*		
			—	0.4	1.2	mA	Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT Osc mode, (Note 4)		
			—	1.0	2.0	mA	Fosc = 10 MHz, VDD = 3.0V, WDT disabled, HS Osc mode, (Note 6)		
			—	4.0	6.0	mA	Fosc = 20 MHz, VDD = 4.5V, WDT disabled, HS Osc mode		
			—	4.0	7.0	mA	Fosc = 20 MHz, VDD = 5.5V, WDT disabled*, HS Osc mode		
			—	35	70	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP Osc mode		
D020	IPD	Power Down Current ⁽³⁾	_	_	2.2	μA	VDD = 3.0V		
			—	—	5.0	μA	VDD = 4.5V*		
			—	—	9.0	μA	VDD = 5.5V		
		(5)	—	—	15	μA	VDD = 5.5V Extended		
D022	Δ IWDT	WDT Current ⁽⁵⁾		6.0	10	μA	VDD = 4.0V		
D022A		Brown-out Reset Current ⁽⁵⁾		75	12	μA	$(125^{\circ}C)$		
D022A D023	∆IBOR ∆ICOMP	Comparator Current for each	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V		
		Comparator ⁽⁵⁾				1			
D023A	Δ IVREF	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V		
	$\Delta \text{IEE Write}$	Operating Current	—		3	mA	Vcc = 5.5V, SCL = 400 kHz		
	$\Delta \text{IEE} \ \text{Read}$	Operating Current	—		1	mA			
	ΔIEE	Standby Current	—		30	μA	Vcc = 3.0V, EE Vdd = Vcc		
	ΔIEE	Standby Current	—		100	μA	Vcc = 3.0V, EE Vdd = Vcc		
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures		
		RC Oscillator Operating Frequency	0	—	4	MHz	All temperatures		
		XT Oscillator Operating Frequency	0	-	4	MHz	All temperatures		
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures		

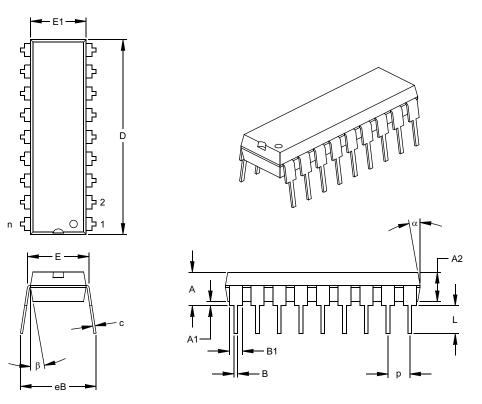
These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP


mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

		INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manag	er Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16C62X	_iterature Number: DS30235J
Que	stions:	
1. \	What are the best features of this	document?
-		
<u>-</u>		
2. I	How does this document meet yo	ur hardware and software development needs?
-		
3. [Do you find the organization of thi	s document easy to follow? If not, why?
_		
_		
4. \	What additions to the document d	o you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the documen	t could be made without affecting the overall usefulness?
-		
- 6 I	s there any incorrect or misleadir	a information (what and where)?
0. 1		
-		
7. H	How would you improve this docu	ment?
_		
-		