E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc622a-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Table of Contents

1.0	General Description	. 5
2.0	PIC16C62X Device Varieties	. 7
3.0	Architectural Overview	. 9
4.0	Memory Organization	13
5.0	I/O Ports	25
6.0	Timer0 Module	31
7.0	Comparator Module	37
8.0	Voltage Reference Module	43
9.0	Special Features of the CPU	45
10.0	Instruction Set Summary	61
11.0	Development Support	75
12.0	Electrical Specifications	81
13.0	Device Characterization Information	09
14.0	Packaging Information 1	13
Append	Jix A: Enhancements 1	19
Append	dix B: Compatibility 1	19
Index		21
On-Line	e Support 1	23
System	Information and Upgrade Hot Line	23
Reader	r Response 1	24
Produc	t Identification System 1	25

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

		PIC16C620 ⁽³⁾	PIC16C620A ⁽¹⁾⁽⁴⁾	PIC16CR620A ⁽²⁾	PIC16C621 ⁽³⁾	PIC16C621A ⁽¹⁾⁽⁴⁾	PIC16C622 ⁽³⁾	PIC16C622A ⁽¹⁾⁽⁴⁾
Clock	Maximum Frequency of Operation (MHz)	20	40	20	20	40	20	40
Memory	EPROM Program Memory (x14 words)	512	512	512	1K	1K	2K	2K
	Data Memory (bytes)	80	96	96	80	96	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMRO	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2	2	2
	Internal Reference Voltage	Yes						
Features	Interrupt Sources	4	4	4	4	4	4	4
	I/O Pins	13	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.7-5.5	2.5-5.5	2.5-6.0	2.7-5.5	2.5-6.0	2.7-5.5
	Brown-out Reset	Yes						
	Packages	18-pin DIP, SOIC; 20-pin SSOP						

TABLE 1-1: PIC16C62X FAMILY OF DEVICES

All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.

3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.

4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART[®] and PRO MATE[®] programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Productionsm (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C620(A) and PIC16CR620A address 512 x 14 on-chip program memory. The PIC16C621(A) addresses $1K \times 14$ program memory. The PIC16C622(A) addresses $2K \times 14$ program memory. All program memory is internal.

The PIC16C62X can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C62X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

Name	DIP/SOIC Pin #	SSOP Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	I	ST/CMOS	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin out- puts CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	4	4	I/P	ST	Master Clear (Reset) input/programming voltage input. This pin is an Active Low Reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	17	19	I/O	ST	Analog comparator input
RA1/AN1	18	20	I/O	ST	Analog comparator input
RA2/AN2/VREF	1	1	I/O	ST	Analog comparator input or VREF output
RA3/AN3	2	2	I/O	ST	Analog comparator input /output
RA4/T0CKI	3	3	I/O	ST	Can be selected to be the clock input to the Timer0 timer/counter or a comparator output. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	6	7	I/O	TTL/ST ⁽¹⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	8	I/O	TTL	
RB2	8	9	I/O	TTL	
RB3	9	10	I/O	TTL	
RB4	10	11	I/O	TTL	Interrupt-on-change pin.
RB5	11	12	I/O	TTL	Interrupt-on-change pin.
RB6	12	13	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock.
RB7	13	14	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.
Vss	5	5,6	Р	_	Ground reference for logic and I/O pins.
VDD	14	15,16	Р	_	Positive supply for logic and I/O pins.
Legend:	O = out — = No	put t used	I/O = inp	ut/output	P = power ST = Schmitt Trigger input

TABLE 3-1:	PIC16C62X PINOUT DESCRIPTIC)N

TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOR is unknown on Power-on Reset. It
	must then be set by the user and checked
	on subsequent RESETS to see if BOR is
	cleared, indicating a brown-out has
	occurred. The $\overline{\text{BOR}}$ STATUS bit is a "don't
	care" and is not necessarily predictable if
	the brown-out circuit is disabled (by
	programming BODEN bit in the
	Configuration word).

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset STATUS bit

- 1 = No Power-on Reset occurred
- 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR**: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

TABLE 5-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to WDT.)

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

	-	
1.BCF	STATUS, RPO	;Skip if already in ;Bank 0
2.CLRWDT		;Clear WDT
3.CLRF	TMR0	;Clear TMR0 & Prescaler
4.BSF	STATUS, RPO	;Bank 1
5.MOVLW	'00101111'b;	;These 3 lines (5, 6, 7)
6.MOVWF	OPTION	;are required only if ;desired PS<2:0> are
7.CLRWDT		;000 or 001
8.MOVLW	'00101xxx'b	;Set Postscaler to
9.MOVWF	OPTION	;desired WDT rate
10.BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2:

CHANGING PRESCALER (WDT→TIMER0)

	•	
CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		prescale value and
		, plock gourgo
		,CIOCK SOULCE
MOVWF	OPTION REG	
BCF	STATUS, RPO	

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0	module regi	ister						XXXX XXXX	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

Note: Shaded bits are not used by TMR0 module.

9.3 RESET

The PIC16C62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOR)

Some registers are not affected in any RESET condition Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset,

MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 9-2. These bits are used in software to determine the nature of the RESET. See Table 9-5 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 9-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 12-5 for pulse width specification.

FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear				
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0				
Status Affected:	None	Status Affected:	None				
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff				
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the				
Words:	1		next instruction is skipped.				
Cycles:	1		tion fetched during the current				
Example	BCF FLAG_REG, 7		instruction execution is discarded,				
	Before Instruction FLAG REG = 0xC7		and a NOP is executed instead, making this a two-cycle instruction.				
	After Instruction	Words:	1				
	FLAG REG = 0x47	Cycles:	1(2)				
	_	Example	HERE BTFSC FLAG,1				
BSF	Bit Set f		TRUE • DE				
Syntax:	[<i>label</i>]BSF f,b		•				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE				
Operation:	$1 \rightarrow (f \le b >)$		After Instruction				
Status Affected:	None		PC = address TRUE				
Encoding:	01 01bb bfff ffff		if FLAG<1>=1,				
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE				
Words:	1						
Cycles:	1						
Example	BSF FLAG_REG, 7						

Before Instruction FLAG_REG = 0x0A After Instruction

FLAG_REG = 0x8A

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$
Operation:	0 ≤ b < 7 skip if (f) = 1 None	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>
Encoding:	01 11bb bfff ffff	Status Affected:	None
Description:	If bit 'b' in register 'f' is '1' then the	Encoding:	10 Okkk kkkk kkkk
	next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is
Words:	1		a two-cycle instruction.
Cycles:	1(2)	Words:	1
Example	HERE BTFSS FLAG,1	Cycles:	2
	TRUE • DE •	Example	HERE CALL THER E
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TBUE		PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1
	IC- address TRUE	CLRF	Clear f
		Syntax:	[<i>label</i>] CLRF f
		Operands:	$0 \le f \le 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
		Status Affected:	Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF FLAG_REG
			Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1

DECFSZ	Decrement f, Skip if 0									
Syntax:	[<i>label</i>] DECFSZ f,d									
Operands:	$0 \le f \le 127$ $d \in [0,1]$									
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0									
Status Affected:	None									
Encoding:	00 1011 dfff ffff									
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.									
Words:	1									
Cycles:	1(2)									
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • • •									
	After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1									
GOTO	Unconditional Branch									
Syntax:	[<i>label</i>] GOTO k									
Operands:	$0 \leq k \leq 2047$									
Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>									
Status Affected:	None									
Encoding:	10 1kkk kkkk kkkk									
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.									
Words:	1									
Cycles:	2									
Example	GOTO THERE									
	After Instruction PC = Address THERE									

INCF	Increment f								
Syntax:	[label] INCF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) + 1 \rightarrow (dest)								
Status Affected:	Z								
Encoding:	00 1010 dfff fff	f							
Description:	incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
Words:	1								
Cycles:	1								
Example	INCF CNT, 1								
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1								

12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended) PIC16CR62XA-20 (Commercial, Industrial, Extended) PIC16LCR62XA-04 (Commercial, Industrial, Extended) (CONT.)

				Standard Operating Conditions (unless otherwise stated)						
PIC16C	R62XA-(04	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and							
PIC16C	R62XA-2	20		•			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and			
			-40°C \leq TA \leq +125°C for extended							
			Standard Operating Conditions (unless otherwise stated)							
				Operating temperature -40° C < Ta < +85°C for industrial and						
PIC16LCR62XA-04				ling ton	porat		0° C < TA < +70°C for commercial and			
						-40	P° $\leq T_{A} \leq +125^{\circ}$ C for extended			
Dorom	Sum	Characteristic	Min	Tunt	Mox	Unito				
No	Sym	Characteristic	IVIIII	турт	wax	Units	conditions			
NO.	1			000	050)/55 0.0)/			
D020	IPD	Power-down Current ⁽³⁾	—	200	950	nA	VDD = 3.0V			
			_	0.400	1.0	μΑ				
			_	0.600	2.2	μΑ	VDD - 5.5V			
Daga	1	- (0)	_	5.0	9.0	μΑ	VDD – 5.5V Extended Temp.			
D020	IPD	Power-down Current ⁽³⁾	—	200	850	nA	VDD = 2.5V			
			_	200	950	nA A	$VDD = 3.0V^{*}$			
			_	0.600	2.2	μΑ	VDD = 5.5V			
D aga		(5)	_	5.0	9.0	μΑ				
D022	Δ IWDT	WD1 Current ⁽³⁾	—	6.0	10	μA	VDD=4.0V			
D0004	415.05	Decours out Decot Quere at(5)		75	12	μΑ	$\frac{(125^{\circ}C)}{C}$			
DUZZA		Brown-out Reset Current(*)	_	75	125	μΑ	BOD enabled, $VDD = 5.0V$			
D023		Comparator Current for each	_	30	60	μA	VDD = 4.0V			
00234		Vere Current ⁽⁵⁾		80	125					
DOZJA		WDT Current ⁽⁵⁾		00	100	μΑ	VDD = 4.0V			
D022		wDT Current(**	_	6.0	10	μΑ	VDD-4.0V (125°C)			
00224		Brown out Posot Current ⁽⁵⁾		75	12	μΑ	$\frac{(125)}{125}$ C)			
D022A		Comparator Current for each		30	60	μΑ	$V_{DD} = 4.0V$			
0025		Comparator ⁽⁵⁾		50	00	μΛ	VDD - 4.0V			
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V			
1A	Fosc	LP Oscillator Operating Frequency	0	_	200	kHz	All temperatures			
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures			
		XT Oscillator Operating Frequency	0		4	MHz	All temperatures			
		HS Oscillator Operating Frequency	0		20	MHz	All temperatures			
1A	Fosc	LP Oscillator Operating Frequency	0	—	200	kHz	All temperatures			
		RC Oscillator Operating Frequency	0		4	MHz	All temperatures			
		XT Oscillator Operating Frequency	0	—	4	MHz	All temperatures			
		HS Oscillator Operating Frequency	0	—	20	MHz	All temperatures			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)

PIC16C62X/C62XA/CR62XA			$ \begin{array}{ c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & -40^\circ\text{C} & \leq \text{TA} \leq +85^\circ\text{C} \text{ for industrial and} \\ & 0^\circ\text{C} & \leq \text{TA} \leq +70^\circ\text{C} \text{ for commercial and} \\ & -40^\circ\text{C} & \leq \text{TA} \leq +125^\circ\text{C} \text{ for extended} \\ \hline \end{array} $						
PIC16LC62X/LC62XA/LCR62XA			Standa Operatii	r d Ope ng tem	erating C perature	onditio -40°C 0°C -40°C	The second states is the two second states and the second states and the second states are stated as the second states are states are states as the second states are state		
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	—	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise		
D031		with Schmitt Trigger input	Vss		0.2 Vdd	V			
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)		
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V			
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V			
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	-	0.8V 0.15 VDD	V	VDD = 4.5V to 5.5V otherwise		
D031		with Schmitt Trigger input	Vss	—	0.2 VDD	V			
D032		MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	—	0.2 VDD	V	(Note 1)		
D033		OSC1 (in XT and HS)	Vss	—	0.3 VDD	V			
		OSC1 (in LP)	Vss	—	0.6 Vdd- 1.0	V			
	VIH	Input High Voltage							
		I/O ports							
D040		with TTL buffer	2.0V 0.25 VDD + 0.8V	_	Vdd Vdd	V	V _{DD} = 4.5V to 5.5V otherwise		
D041		with Schmitt Trigger input	0.8 VDD	_	VDD				
D042		MCLR RA4/T0CKI	0.8 Vdd	_	Vdd	V			
D043 D043A		OSC1 (XT, HS and LP) OSC1 (in RC mode)	0.7 Vdd 0.9 Vdd	—	Vdd	V	(Note 1)		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾		75 —	200 400	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
11*	TosH2ck H	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	75 —	200 400	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
12*	TckR	CLKOUT rise time ⁽¹⁾		35 —	100 200	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
13*	TckF	CLKOUT fall time ⁽¹⁾		35 —	100 200	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
14*	TckL2ioV	CLKOUT \downarrow to Port out valid ⁽¹⁾	_	—	20	ns	
15*	TioV2ckH	Port in valid before CLKOUT ↑ ⁽¹⁾	Tosc +200 ns Tosc +400 ns	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
16*	TckH2iol	Port in hold after CLKOUT $\uparrow^{(1)}$	0	—		ns	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		50	150 300	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	100 200	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)	0	—	—	ns	
20*	TioR	Port output rise time	_	10 —	40 80	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
21*	TioF	Port output fall time	_	10 —	40 80	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
22*	Tinp	RB0/INT pin high or low time	25 40	_	_	ns ns	PIC16C62X(A) PIC16LC62X(A) PIC16CR62XA PIC16LCR62XA
23	Trbp	RB<7:4> change interrupt high or low time	Тсү	—	—	ns	

TABLE 12-4: CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-051

NOTES:

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Phoenix

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Marketing Support Division Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 China - Fuzhou Microchip Technology Consulting (Shanghai)

Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen**

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao

Mm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India Microchip Technology Inc. India Liaison Office Marketing Support Division Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207

Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 United Kingdom Microchip Ltd 505 Eskdale Road

Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/25/03