

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Detuns                     |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | PIC                                                                          |
| Core Size                  | 8-Bit                                                                        |
| Speed                      | 4MHz                                                                         |
| Connectivity               | -                                                                            |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                             |
| Number of I/O              | 13                                                                           |
| Program Memory Size        | 3.5KB (2K x 14)                                                              |
| Program Memory Type        | OTP                                                                          |
| EEPROM Size                |                                                                              |
| RAM Size                   | 128 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                  |
| Data Converters            | -                                                                            |
| Oscillator Type            | External                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                               |
| Supplier Device Package    | 20-SSOP                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc622a-04i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

# 2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART<sup>®</sup> and PRO MATE<sup>®</sup> programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

#### 2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

# 2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

# 2.4 Serialized Quick-Turnaround-Production<sup>sm</sup> (SQTP<sup>sm</sup>) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

#### FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

| File     |                     |                     | File        |
|----------|---------------------|---------------------|-------------|
| Address  | 3                   |                     | Address     |
| 00h      | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h         |
| 01h      | TMR0                | OPTION              | 81h         |
| 02h      | PCL                 | PCL                 | 82h         |
| 03h      | STATUS              | STATUS              | 83h         |
| 04h      | FSR                 | FSR                 | 84h         |
| 05h      | PORTA               | TRISA               | 85h         |
| 06h      | PORTB               | TRISB               | 86h         |
| 07h      |                     |                     | 87h         |
| 08h      |                     |                     | 88h         |
| 09h      |                     |                     | 89h         |
| 0Ah      | PCLATH              | PCLATH              | 8Ah         |
| 0Bh      | INTCON              | INTCON              | 8Bh         |
| 0Ch      | PIR1                | PIE1                | 8Ch         |
| 0Dh      |                     |                     | 8Dh         |
| 0Eh      |                     | PCON                | 8Eh         |
| 0Fh      |                     |                     | 8Fh         |
| 10h      |                     |                     | 90h         |
| 11h      |                     |                     | 91h         |
| 12h      |                     |                     | 92h         |
| 13h      |                     |                     | 93h         |
| 14h      |                     |                     | 94h         |
| 15h      |                     |                     | 95h         |
| 16h      |                     |                     | 96h         |
| 17h      |                     |                     | 97h         |
| 18h      |                     |                     | 98h         |
| 19h      |                     |                     | 99h         |
| 1Ah      |                     |                     | 9Ah         |
| 1Bh      |                     |                     | 9Bh         |
| 1Ch      |                     |                     | 9Ch         |
| 1Dh      |                     |                     | 9Dh         |
| 1Eh      |                     |                     | 9Eh         |
| 1Fh      | CMCON               | VRCON               | 9Fh         |
| 20h      |                     | _                   | A0h         |
|          | General             |                     |             |
|          | Purpose<br>Register |                     |             |
| 6Fh      | 5                   |                     |             |
| 70h      |                     |                     |             |
|          |                     |                     |             |
|          |                     |                     |             |
|          |                     |                     |             |
| 7Fh      |                     |                     | FFh         |
|          | Bank 0              | Bank 1              |             |
| <b>—</b> |                     | 1 4                 |             |
| Unimp    | plemented data me   | mory locations, r   | ead as '0'. |
| Note 1:  | Not a physical re   | egister.            |             |
|          |                     |                     |             |
|          |                     |                     |             |

# FIGURE 4-5:

#### DATA MEMORY MAP FOR THE PIC16C622

|                 | 1116                |                     |                 |  |
|-----------------|---------------------|---------------------|-----------------|--|
| File<br>Address | 8                   |                     | File<br>Address |  |
| 00h             | INDF <sup>(1)</sup> | INDF <sup>(1)</sup> | 80h             |  |
| 01h             | TMR0                | OPTION              | 81h             |  |
| 02h             | PCL                 | PCL                 | 82h             |  |
| 03h             | STATUS              | STATUS              | 83h             |  |
| 04h             | FSR                 | FSR                 | 84h             |  |
| 05h             | PORTA               | TRISA               | 85h             |  |
| 06h             | PORTB               | TRISB               | 86h             |  |
| 00h             | TOILID              | TRIOD               | 87h             |  |
| 07h<br>08h      |                     |                     | 88h             |  |
| 00h             |                     |                     | 89h             |  |
| 03h<br>0Ah      | PCLATH              | PCLATH              | 8Ah             |  |
| 0An<br>0Bh      | INTCON              | INTCON              | 8Bh             |  |
| 0Dh             | PIR1                | PIE1                | 8Ch             |  |
| 0Ch<br>0Dh      | PIRI                | PIEI                | 8Dh             |  |
|                 |                     | PCON                |                 |  |
| 0Eh<br>0Fh      |                     | PCON                | 8Eh             |  |
|                 |                     |                     | 8Fh             |  |
| 10h             |                     |                     | 90h             |  |
| 11h             |                     |                     | 91h             |  |
| 12h             |                     |                     | 92h             |  |
| 13h             |                     |                     | 93h             |  |
| 14h             |                     |                     | 94h             |  |
| 15h             |                     |                     | 95h             |  |
| 16h             |                     |                     | 96h             |  |
| 17h             |                     |                     | 97h             |  |
| 18h             |                     |                     | 98h             |  |
| 19h             |                     |                     | 99h             |  |
| 1Ah             |                     |                     | 9Ah             |  |
| 1Bh             |                     |                     | 9Bh             |  |
| 1Ch             |                     |                     | 9Ch             |  |
| 1Dh             |                     |                     | 9Dh             |  |
| 1Eh             |                     |                     | 9Eh             |  |
| 1Fh             | CMCON               | VRCON               | 9Fh             |  |
| 20h             |                     |                     | A0h             |  |
|                 | General<br>Purpose  | General<br>Purpose  |                 |  |
|                 | Register            | Register            |                 |  |
|                 | 0                   | 5                   | BFh             |  |
|                 |                     |                     | C0h             |  |
|                 |                     |                     |                 |  |
|                 |                     |                     |                 |  |
|                 |                     |                     |                 |  |
| 7Fh             |                     |                     | FFh             |  |
| , , , , , ,     | Bank 0              | Bank 1              |                 |  |
|                 |                     |                     |                 |  |
| Unim            | plemented data me   | mory locations, re  | ad as '0'.      |  |
| Note 1:         | Not a physical re   | aister              |                 |  |
|                 |                     |                     |                 |  |
|                 |                     |                     |                 |  |

#### 4.2.2.1 STATUS Register

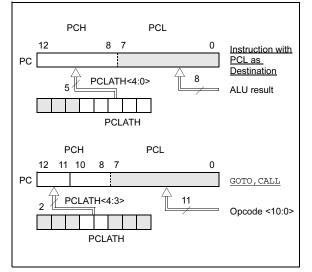
The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
  - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.


#### REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

|         | Reserved                                                                                                                                                                | Reserved                       | R/W-0          | R-1            | R-1            | R/W-x          | R/W-x        | R/W-x        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|----------------|----------------|----------------|--------------|--------------|
|         | IRP                                                                                                                                                                     | RP1                            | RP0            | TO             | PD             | Z              | DC           | С            |
|         | bit 7                                                                                                                                                                   |                                |                |                |                |                |              | bit 0        |
|         |                                                                                                                                                                         |                                |                |                |                |                |              |              |
| bit 7   | -                                                                                                                                                                       | ter Bank Sel                   | -              | d for indirect | addressing     | )              |              |              |
|         |                                                                                                                                                                         | , 3 (100h - 1<br>, 1 (00h - FF |                |                |                |                |              |              |
|         |                                                                                                                                                                         | t is reserved                  |                | 16C62X; alv    | /ays maintai   | n this bit cle | ar.          |              |
| bit 6-5 |                                                                                                                                                                         | Register Ban                   |                |                | -              |                |              |              |
|         |                                                                                                                                                                         | 1 (80h - FFh                   |                |                |                |                |              |              |
|         |                                                                                                                                                                         | 0 (00h - 7Fh                   |                |                |                |                |              |              |
|         | Each bank<br>clear.                                                                                                                                                     | is 128 bytes                   | 5. The RP1 t   | oit is reserve | ed on the PIC  | C16C62X; a     | lways mainta | ain this bit |
| bit 4   | TO: Time-c                                                                                                                                                              | out bit                        |                |                |                |                |              |              |
|         |                                                                                                                                                                         | ower-up, CLI                   | RWDT instruc   | ction. or SLE  | EP instruction | on             |              |              |
|         |                                                                                                                                                                         | time-out oc                    |                | ,              |                |                |              |              |
| bit 3   | PD: Power                                                                                                                                                               | -down bit                      |                |                |                |                |              |              |
|         | 1 = After power-up or by the CLRWDT instruction<br>0 = By execution of the SLEEP instruction                                                                            |                                |                |                |                |                |              |              |
| bit 2   | Z: Zero bit                                                                                                                                                             |                                |                |                |                |                |              |              |
|         | <ul> <li>1 = The result of an arithmetic or logic operation is zero</li> <li>0 = The result of an arithmetic or logic operation is not zero</li> </ul>                  |                                |                |                |                |                |              |              |
| bit 1   | <b>DC</b> : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(for borrow the polarity                                                                    |                                |                |                |                |                |              |              |
|         | is reversed)                                                                                                                                                            |                                |                |                |                |                |              |              |
|         |                                                                                                                                                                         | -out from the                  |                |                |                | rred           |              |              |
|         |                                                                                                                                                                         | ry-out from th                 |                |                |                |                |              |              |
| bit 0   | •                                                                                                                                                                       | orrow bit (AD                  |                |                |                |                |              |              |
|         | <ul> <li>1 = A carry-out from the Most Significant bit of the result occurred</li> <li>0 = No carry-out from the Most Significant bit of the result occurred</li> </ul> |                                |                |                |                |                |              |              |
|         | Note:                                                                                                                                                                   | For borrow t                   | he polarity i  | s reversed.    | A subtraction  | on is execut   | ed by addin  | g the two's  |
|         | complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.                  |                                |                |                |                |                |              |              |
|         |                                                                                                                                                                         | loaded with e                  | either the hig | gh or low or   | der bit of the | source reg     | ister.       |              |
|         | Legend:                                                                                                                                                                 | L. L. 14                       |                |                |                |                | hit on all   | 0            |
|         | R = Reada                                                                                                                                                               |                                |                | ritable bit    |                | •              | bit, read as |              |
|         | - n = Value                                                                                                                                                             | at POR                         | 1′ = Bi        | it is set      | '0' = Bit i    | scleared       | x = Bit is u | nknown       |

# 4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS



# 4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

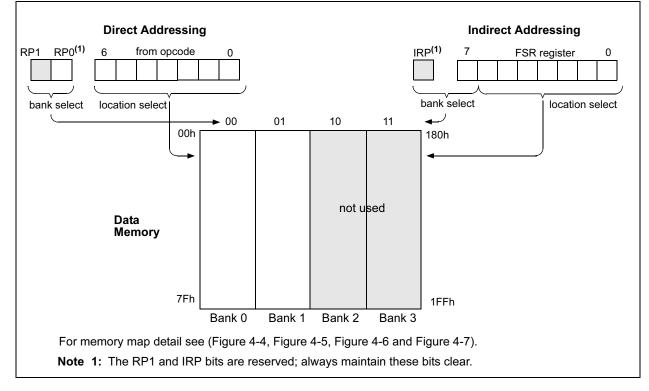
# 4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
  - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

#### 4.4 Indirect Addressing, INDF and FSR Registers

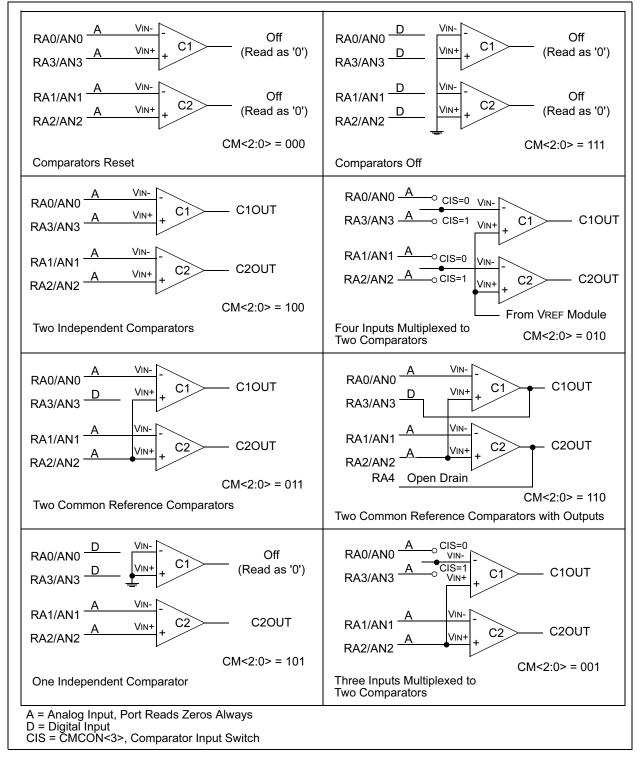

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-9. However, IRP is not used in the PIC16C62X.

A simple program to clear RAM location 20h-7Fh using indirect addressing is shown in Example 4-1.

| EXAN  | IPLE 4- | 1: INC | DIRECT ADDRESSING    |
|-------|---------|--------|----------------------|
|       | movlw   | 0x20   | ;initialize pointer  |
|       | movwf   | FSR    | ;to RAM              |
| NEXT  | clrf    | INDF   | ;clear INDF register |
|       | incf    | FSR    | ;inc pointer         |
|       | btfss   | FSR,7  | ;all done?           |
|       | goto    | NEXT   | ;no clear next       |
|       |         |        | ;yes continue        |
| CONTI | NUE:    |        |                      |
|       |         |        |                      |

### FIGURE 4-9: DIRECT/INDIRECT ADDRESSING PIC16C62X




### 7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

**Note:** Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.





# 9.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16C62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR)
- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-Circuit Serial Programming™

The PIC16C62X devices have a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

#### TABLE 9-4: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 000h                  | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 000h                  | 000u uuuu          | uu               |
| MCLR Reset during SLEEP            | 000h                  | 0001 0uuu          | uu               |
| WDT Reset                          | 000h                  | 0000 uuuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 000h                  | 000x xuuu          | u0               |
| Interrupt Wake-up from SLEEP       | PC + 1 <sup>(1)</sup> | uuu1 0uuu          | uu               |

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

**Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

| Register | Address | Power-on Reset | <ul> <li>MCLR Reset during<br/>normal operation</li> <li>MCLR Reset during<br/>SLEEP</li> <li>WDT Reset</li> <li>Brown-out Reset <sup>(1)</sup></li> </ul> | <ul> <li>Wake-up from SLEEP<br/>through interrupt</li> <li>Wake-up from SLEEP<br/>through WDT time-out</li> </ul> |
|----------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| W        | _       | xxxx xxxx      | นนนน นนนน                                                                                                                                                  | <u></u>                                                                                                           |
| INDF     | 00h     |                | _                                                                                                                                                          | _                                                                                                                 |
| TMR0     | 01h     | xxxx xxxx      | սսսս սսսս                                                                                                                                                  | นนนน นนนน                                                                                                         |
| PCL      | 02h     | 0000 0000      | 0000 0000                                                                                                                                                  | PC + 1 <sup>(3)</sup>                                                                                             |
| STATUS   | 03h     | 0001 1xxx      | 000q quuu <sup>(4)</sup>                                                                                                                                   | uuuq quuu <sup>(4)</sup>                                                                                          |
| FSR      | 04h     | xxxx xxxx      | սսսս սսսս                                                                                                                                                  | uuuu uuuu                                                                                                         |
| PORTA    | 05h     | x xxxx         | u uuuu                                                                                                                                                     | u uuuu                                                                                                            |
| PORTB    | 06h     | xxxx xxxx      | uuuu uuuu                                                                                                                                                  | uuuu uuuu                                                                                                         |
| CMCON    | 1Fh     | 00 0000        | 00 0000                                                                                                                                                    | uu uuuu                                                                                                           |
| PCLATH   | 0Ah     | 0 0000         | 0 0000                                                                                                                                                     | u uuuu                                                                                                            |
| INTCON   | 0Bh     | 0000 000x      | 0000 000u                                                                                                                                                  | uuuu uqqq <sup>(2)</sup>                                                                                          |
| PIR1     | 0Ch     | -0             | -0                                                                                                                                                         | -q (2,5)                                                                                                          |
| OPTION   | 81h     | 1111 1111      | 1111 1111                                                                                                                                                  | uuuu uuuu                                                                                                         |
| TRISA    | 85h     | 1 1111         | 1 1111                                                                                                                                                     | u uuuu                                                                                                            |
| TRISB    | 86h     | 1111 1111      | 1111 1111                                                                                                                                                  | uuuu uuuu                                                                                                         |
| PIE1     | 8Ch     | -0             | -0                                                                                                                                                         | -u                                                                                                                |
| PCON     | 8Eh     | 0x             | uq <sup>(1,6)</sup>                                                                                                                                        | uu                                                                                                                |
| VRCON    | 9Fh     | 000- 0000      | 000- 0000                                                                                                                                                  | uuu- uuuu                                                                                                         |

#### TABLE 9-5: INITIALIZATION CONDITION FOR REGISTERS

 $\label{eq:legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$ 

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 9-4 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause bit 6 = u.

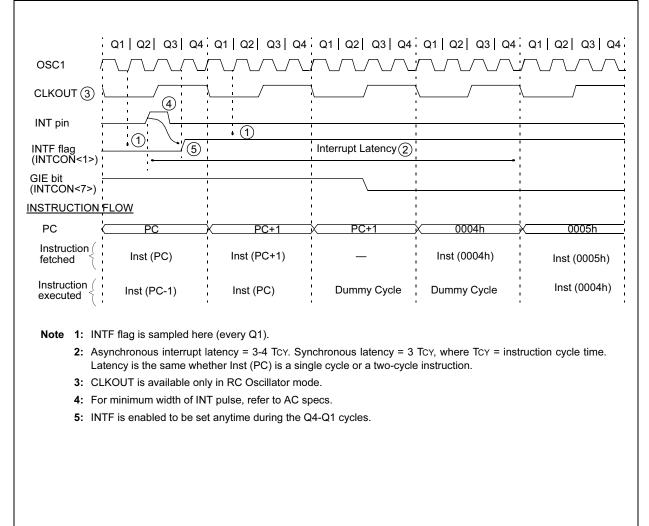
**6:** If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

#### 9.5.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-18 for timing of wakeup from SLEEP through RB0/INT interrupt.

#### 9.5.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.


#### 9.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

| Note: | If a change on the I/O pin should occur   |
|-------|-------------------------------------------|
|       | when the read operation is being executed |
|       | (start of the Q2 cycle), then the RBIF    |
|       | interrupt flag may not get set.           |

#### 9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of comparator interrupts.



#### FIGURE 9-16: INT PIN INTERRUPT TIMING

# **10.1** Instruction Descriptions

| ADDLW            | Add Literal and W                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ADDLW k                                                                                                   |
| Operands:        | $0 \le k \le 255$                                                                                                          |
| Operation:       | $(W) + k \to (W)$                                                                                                          |
| Status Affected: | C, DC, Z                                                                                                                   |
| Encoding:        | 11 111x kkkk kkkk                                                                                                          |
| Description:     | The contents of the W register are<br>added to the eight bit literal 'k' and<br>the result is placed in the W<br>register. |
| Words:           | 1                                                                                                                          |
| Cycles:          | 1                                                                                                                          |
| Example          | ADDLW 0x15                                                                                                                 |
|                  | Before Instruction<br>W = 0x10<br>After Instruction<br>W = 0x25                                                            |

| ANDLW            | AND Literal with W                                                                                                     |
|------------------|------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ANDLW k                                                                                               |
| Operands:        | $0 \le k \le 255$                                                                                                      |
| Operation:       | (W) .AND. (k) $\rightarrow$ (W)                                                                                        |
| Status Affected: | Z                                                                                                                      |
| Encoding:        | 11 1001 kkkk kkkk                                                                                                      |
| Description:     | The contents of W register are<br>AND'ed with the eight bit literal 'k'.<br>The result is placed in the W<br>register. |
| Words:           | 1                                                                                                                      |
| Cycles:          | 1                                                                                                                      |
| Example          | ANDLW 0x5F                                                                                                             |
|                  | Before Instruction<br>W = 0xA3<br>After Instruction<br>W = 0x03                                                        |
| ANDWF            | AND W with f                                                                                                           |

| ADDWF            | Add W and f                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ADDWF f,d                                                                                                                                                     |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                              |
| Operation:       | (W) + (f) $\rightarrow$ (dest)                                                                                                                                                 |
| Status Affected: | C, DC, Z                                                                                                                                                                       |
| Encoding:        | 00 0111 dfff ffff                                                                                                                                                              |
| Description:     | Add the contents of the W register<br>with register 'f'. If 'd' is 0, the result<br>is stored in the W register. If 'd' is<br>1, the result is stored back in<br>register 'f'. |
| Words:           | 1                                                                                                                                                                              |
| Cycles:          | 1                                                                                                                                                                              |
| Example          | ADDWF FSR, <b>O</b>                                                                                                                                                            |
|                  | Before Instruction<br>W = 0x17<br>FSR = 0xC2<br>After Instruction<br>W = 0xD9<br>FSR = 0xC2                                                                                    |

| ANDWF            | AND W with f                                                                                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ANDWF f,d                                                                                                                                  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                           |
| Operation:       | (W) .AND. (f) $\rightarrow$ (dest)                                                                                                                          |
| Status Affected: | Z                                                                                                                                                           |
| Encoding:        | 00 0101 dfff ffff                                                                                                                                           |
| Description:     | AND the W register with register<br>'f'. If 'd' is 0, the result is stored in<br>the W register. If 'd' is 1, the result<br>is stored back in register 'f'. |
| Words:           | 1                                                                                                                                                           |
| Cycles:          | 1                                                                                                                                                           |
| Example          | ANDWF FSR, <b>1</b>                                                                                                                                         |
|                  | Before Instruction<br>W = 0x17<br>FSR = 0xC2<br>After Instruction<br>W = 0x17<br>FSR = 0x02                                                                 |

# PIC16C62X

| BCF              | Bit Clear f                                                         | BTFSC            | Bit Test, Skip if Clear                                                   |
|------------------|---------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|
| Syntax:          | [label]BCF f,b                                                      | Syntax:          | [label]BTFSC f,b                                                          |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ | Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$       |
| Operation:       | $0 \rightarrow (f \le b >)$                                         | Operation:       | skip if (f <b>) = 0</b>                                                   |
| Status Affected: | None                                                                | Status Affected: | None                                                                      |
| Encoding:        | 01 00bb bfff ffff                                                   | Encoding:        | 01 10bb bfff ffff                                                         |
| Description:     | Bit 'b' in register 'f' is cleared.                                 | Description:     | If bit 'b' in register 'f' is '0', then the                               |
| Words:           | 1                                                                   |                  | next instruction is skipped.<br>If bit 'b' is '0', then the next instruc- |
| Cycles:          | 1                                                                   |                  | tion fetched during the current                                           |
| Example          | BCF FLAG_REG, 7                                                     |                  | instruction execution is discarded,                                       |
|                  | Before Instruction<br>FLAG_REG = 0xC7                               |                  | and a NOP is executed instead,<br>making this a two-cycle instruction.    |
|                  | After Instruction                                                   | Words:           | 1                                                                         |
|                  | FLAG_REG = 0x47                                                     | Cycles:          | 1(2)                                                                      |
|                  |                                                                     | Example          | here btfsc <b>FLAG,1</b><br>false goto <b>process co</b>                  |
| BSF              | Bit Set f                                                           |                  | TRUE DE                                                                   |
| Syntax:          | [ <i>label</i> ]BSF f,b                                             |                  | •                                                                         |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |                  | Before Instruction<br>PC = address HERE                                   |
| Operation:       | $1 \rightarrow (f \le b >)$                                         |                  | After Instruction<br>if FLAG<1> = 0.                                      |
| Status Affected: | None                                                                |                  | PC = address TRUE                                                         |
| Encoding:        | 01 01bb bfff ffff                                                   |                  | if FLAG<1>=1,                                                             |
| Description:     | Bit 'b' in register 'f' is set.                                     |                  | PC = address FALSE                                                        |
| Words:           | 1                                                                   |                  |                                                                           |
| Cycles:          | 1                                                                   |                  |                                                                           |
| Example          | BSF FLAG_REG, 7                                                     |                  |                                                                           |

Before Instruction FLAG\_REG = 0x0A After Instruction

FLAG\_REG = 0x8A

# PIC16C62X

NOTES:

# 11.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

### 11.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

# 11.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

# 11.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

# 11.18 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8-, 14-, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the supercapacitor circuit, and jumpers allow onboard hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

# 11.19 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

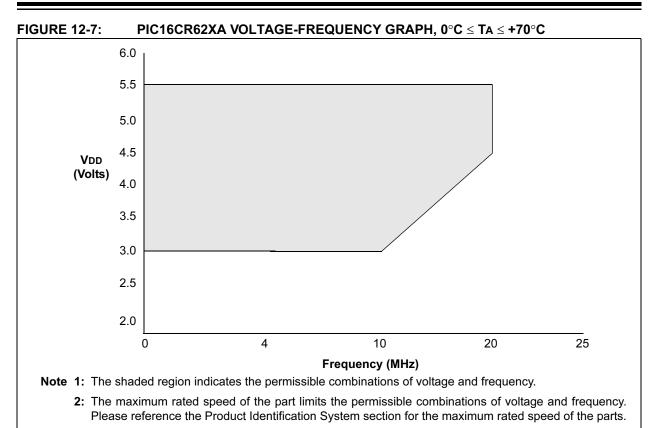
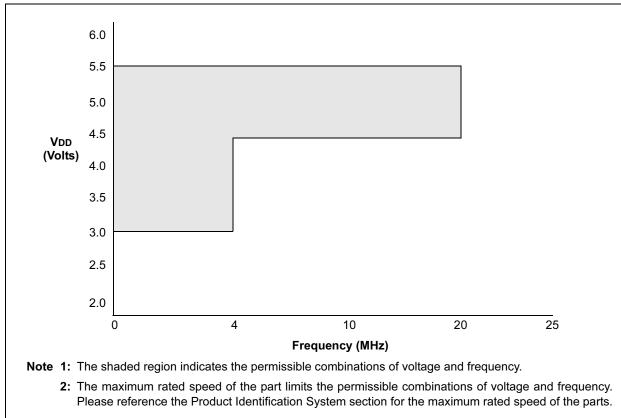




FIGURE 12-8: PIC16CR62XA VOLTAGE-FREQUENCY GRAPH, -40°C  $\leq$  TA  $\leq$  0°C, +70°C  $\leq$  TA  $\leq$  +125°C



#### 12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended) PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)

| PIC16C        | <b>Standar</b><br>Operatir | -                                                                   | -                             |     | C $\leq$ TA $\leq$ +70°C for commercial and |                                             |                                                             |  |  |
|---------------|----------------------------|---------------------------------------------------------------------|-------------------------------|-----|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------|--|--|
| PIC16L0       | C62XA/LCR62XA              | <b>Standa</b><br>Operatii                                           |                               |     |                                             | C $\leq$ TA $\leq$ +70°C for commercial and |                                                             |  |  |
| Param.<br>No. | Sym                        | Characteristic                                                      | Min Typ† Max Units Conditions |     |                                             |                                             |                                                             |  |  |
|               | Vih                        | Input High Voltage                                                  |                               |     |                                             |                                             |                                                             |  |  |
| D040          |                            | with TTL buffer                                                     | 2.0V<br>0.25 VDD<br>+ 0.8V    | _   | Vdd<br>Vdd                                  | V                                           | VDD = 4.5V to 5.5V<br>otherwise                             |  |  |
| D041          |                            | with Schmitt Trigger input                                          | 0.8 Vdd                       | _   | VDD                                         |                                             |                                                             |  |  |
| D042          |                            | MCLR RA4/T0CKI                                                      | 0.8 VDD                       | _   | Vdd                                         | V                                           |                                                             |  |  |
| D043<br>D043A |                            | OSC1 (XT, HS and LP)<br>OSC1 (in RC mode)                           | 0.7 Vdd<br>0.9 Vdd            | -   | Vdd                                         | V                                           | (Note 1)                                                    |  |  |
| D070          | IPURB                      | PORTB weak pull-up current                                          | 50                            | 200 | 400                                         | μA                                          | VDD = 5.0V, VPIN = VSS                                      |  |  |
| D070          | IPURB                      | PORTB weak pull-up current                                          | 50                            | 200 | 400                                         | μA                                          | VDD = 5.0V, VPIN = VSS                                      |  |  |
|               | lı∟                        | Input Leakage Current <sup>(2, 3)</sup><br>I/O ports (Except PORTA) |                               |     | ±1.0                                        | μA                                          | Vss ≤ VPIN ≤ VDD, pin at hi-impedance                       |  |  |
| D060          |                            | PORTA                                                               | _                             | _   | ±0.5                                        | μΑ                                          | $Vss \leq VPIN \leq VDD$ , pin at hi-impedance              |  |  |
| D061          |                            | RA4/T0CKI                                                           | _                             | _   | ±1.0                                        | μΑ                                          | $Vss \leq VPIN \leq VDD$                                    |  |  |
| D063          |                            | OSC1, MCLR                                                          | _                             | _   | ±5.0                                        | μA                                          | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration |  |  |
|               | lı∟                        | Input Leakage Current <sup>(2, 3)</sup>                             |                               |     |                                             |                                             |                                                             |  |  |
|               |                            | I/O ports (Except PORTA)                                            |                               |     | ±1.0                                        | μA                                          | Vss $\leq$ VPIN $\leq$ VDD, pin at hi-impedance             |  |  |
| D060          |                            | PORTA                                                               | -                             | —   | ±0.5                                        | μA                                          | $Vss \le VPIN \le VDD$ , pin at hi-impedance                |  |  |
| D061          |                            | RA4/T0CKI                                                           | -                             | —   | ±1.0                                        | μA                                          | $Vss \leq V \text{PIN} \leq V \text{DD}$                    |  |  |
| D063          |                            | OSC1, MCLR                                                          | —                             | —   | ±5.0                                        | μΑ                                          | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration |  |  |
|               | Vol                        | Output Low Voltage                                                  |                               |     |                                             |                                             |                                                             |  |  |
| D080          |                            | I/O ports                                                           | —                             | —   | 0.6                                         | V                                           | IOL = 8.5 mA, VDD = 4.5V, $-40^{\circ}$ to $+85^{\circ}$ C  |  |  |
|               |                            |                                                                     | —                             | -   | 0.6                                         | V                                           | IOL = 7.0 mA, VDD = 4.5V, +125°C                            |  |  |
| D083          |                            | OSC2/CLKOUT (RC only)                                               | —                             | -   | 0.6                                         | V                                           | IOL = 1.6 mA, VDD = 4.5V, $-40^{\circ}$ to $+85^{\circ}$ C  |  |  |
|               |                            |                                                                     | —                             | —   | 0.6                                         | V                                           | IOL = 1.2 mA, VDD = 4.5V, +125°C                            |  |  |

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**3:** Negative current is defined as coming out of the pin.

# 12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40<sup>(7)</sup> (Commercial) PIC16CR620A-40<sup>(7)</sup> (Commercial)

| DC CH        | IARAC | TERISTICS                                  | Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial |      |                 |      |                                                                |  |
|--------------|-------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------|----------------------------------------------------------------|--|
| Param<br>No. | Sym   | Characteristic                             | Min                                                                                                                                | Тур† | Мах             | Unit | Conditions                                                     |  |
|              | VIL   | Input Low Voltage                          |                                                                                                                                    |      |                 |      |                                                                |  |
|              |       | I/O ports                                  |                                                                                                                                    |      |                 |      |                                                                |  |
| D030         |       | with TTL buffer                            | Vss                                                                                                                                | —    | 0.8V<br>0.15Vdd | V    | VDD = 4.5V to 5.5V, otherwise                                  |  |
| D031         |       | with Schmitt Trigger input                 | Vss                                                                                                                                |      | 0.2VDD          | V    |                                                                |  |
| D032         |       | MCLR, RA4/T0CKI, OSC1<br>(in RC mode)      | Vss                                                                                                                                | —    | 0.2Vdd          | V    | (Note 1)                                                       |  |
| D033         |       | OSC1 (in XT and HS)                        | Vss                                                                                                                                | _    | 0.3VDD          | V    |                                                                |  |
|              |       | OSC1 (in LP)                               | Vss                                                                                                                                | _    | 0.6Vdd - 1.0    | V    |                                                                |  |
|              | Vih   | Input High Voltage                         |                                                                                                                                    |      |                 |      |                                                                |  |
|              |       | I/O ports                                  |                                                                                                                                    |      |                 |      |                                                                |  |
| D040         |       | with TTL buffer                            | 2.0V                                                                                                                               | —    | Vdd             | V    | VDD = 4.5V to 5.5V, otherwise                                  |  |
|              |       |                                            | 0.25 VDD + 0.8                                                                                                                     |      | Vdd             |      |                                                                |  |
| D041         |       | with Schmitt Trigger input                 | 0.8 VDD                                                                                                                            |      | Vdd             |      |                                                                |  |
| D042         |       | MCLR RA4/T0CKI                             | 0.8 VDD                                                                                                                            | —    | Vdd             | V    |                                                                |  |
| D043         |       | OSC1 (XT, HS and LP)                       | 0.7 Vdd                                                                                                                            | —    | Vdd             | V    |                                                                |  |
| D043A        |       | OSC1 (in RC mode)                          | 0.9 VDD                                                                                                                            |      |                 |      | (Note 1)                                                       |  |
| D070         | IPURB | PORTB Weak Pull-up Current                 | 50                                                                                                                                 | 200  | 400             | μA   | VDD = 5.0V, VPIN = VSS                                         |  |
|              | lı∟   | Input Leakage Current <sup>(2, 3)</sup>    |                                                                                                                                    |      |                 |      |                                                                |  |
|              |       | I/O ports (except PORTA)                   |                                                                                                                                    |      | ±1.0            | μA   | Vss $\leq$ VPIN $\leq$ VDD, pin at hi-impedance                |  |
| D060         |       | PORTA                                      | —                                                                                                                                  | —    | ±0.5            | μA   | Vss $\leq$ VPIN $\leq$ VDD, pin at hi-impedance                |  |
| D061         |       | RA4/T0CKI                                  | —                                                                                                                                  | _    | ±1.0            | μA   | $Vss \le VPIN \le VDD$                                         |  |
| D063         |       | OSC1, MCLR                                 | _                                                                                                                                  | —    | ±5.0            | μA   | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration    |  |
|              | Vol   | Output Low Voltage                         |                                                                                                                                    |      |                 |      |                                                                |  |
| D080         |       | I/O ports                                  | _                                                                                                                                  | —    | 0.6             | V    | IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C                        |  |
|              |       |                                            | _                                                                                                                                  | —    | 0.6             | V    | IOL = 7.0 mA, VDD = 4.5V, +125°C                               |  |
| D083         |       | OSC2/CLKOUT (RC only)                      | _                                                                                                                                  | —    | 0.6             | V    | IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C                        |  |
|              |       |                                            |                                                                                                                                    |      | 0.6             | V    | IOL = 1.2 mA, VDD = 4.5V, +125°C                               |  |
|              | Vон   | Output High Voltage <sup>(3)</sup>         |                                                                                                                                    |      |                 |      |                                                                |  |
| D090         |       | I/O ports (except RA4)                     | VDD-0.7                                                                                                                            | —    | —               | V    | IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C                       |  |
|              |       |                                            | VDD-0.7                                                                                                                            | —    | —               | V    | ІОН = -2.5 mA, VDD = 4.5V, +125°C                              |  |
| D092         |       | OSC2/CLKOUT (RC only)                      | VDD-0.7                                                                                                                            | —    | —               | V    | IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C                       |  |
|              |       |                                            | VDD-0.7                                                                                                                            | _    | —               | V    | Іон = -1.0 mA, Vdd = 4.5V, +125°C                              |  |
| *D150        | Vod   | Open Drain High Voltage                    |                                                                                                                                    |      | 8.5             | V    | RA4 pin                                                        |  |
|              |       | Capacitive Loading Specs on<br>Output Pins |                                                                                                                                    |      |                 |      |                                                                |  |
| D100         | Cosc2 | OSC2 pin                                   |                                                                                                                                    |      | 15              | pF   | In XT, HS and LP modes when external clock used to drive OSC1. |  |
| D101         | Cio   | All I/O pins/OSC2 (in RC mode)             |                                                                                                                                    |      | 50              | pF   |                                                                |  |
|              |       | parameters are characterized but not       | <u> </u>                                                                                                                           | L    | ~~              | ۳.   |                                                                |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

| Parameter<br>No. | Sym          | Characteristic                                                           | Min                                | Тур†    | Max        | Units    | Conditions                                                   |
|------------------|--------------|--------------------------------------------------------------------------|------------------------------------|---------|------------|----------|--------------------------------------------------------------|
| 10*              | TosH2ckL     | OSC1↑ to CLKOUT↓ <sup>(1)</sup>                                          |                                    | 75<br>— | 200<br>400 | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 11*              | TosH2ck<br>H | OSC1↑ to CLKOUT↑ <sup>(1)</sup>                                          |                                    | 75<br>— | 200<br>400 | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 12*              | TckR         | CLKOUT rise time <sup>(1)</sup>                                          |                                    | 35<br>— | 100<br>200 | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 13*              | TckF         | CLKOUT fall time <sup>(1)</sup>                                          |                                    | 35<br>— | 100<br>200 | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 14*              | TckL2ioV     | CLKOUT ↓ to Port out valid <sup>(1)</sup>                                | _                                  | —       | 20         | ns       |                                                              |
| 15*              | TioV2ckH     | Port in valid before CLKOUT ↑ <sup>(1)</sup>                             | Tosc +200<br>ns<br>Tosc +400<br>ns | —       |            | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 16*              | TckH2iol     | Port in hold after CLKOUT ↑ <sup>(1)</sup>                               | 0                                  | —       |            | ns       |                                                              |
| 17*              | TosH2ioV     | OSC1↑ (Q1 cycle) to Port out valid                                       |                                    | 50      | 150<br>300 | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 18*              | TosH2iol     | OSC1 <sup>↑</sup> (Q2 cycle) to Port input<br>invalid (I/O in hold time) | 100<br>200                         | _       |            | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 19*              | TioV2osH     | Port input valid to OSC1↑ (I/O in setup time)                            | 0                                  | —       | _          | ns       |                                                              |
| 20*              | TioR         | Port output rise time                                                    |                                    | 10<br>— | 40<br>80   | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 21*              | TioF         | Port output fall time                                                    | _                                  | 10<br>— | 40<br>80   | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 22*              | Tinp         | RB0/INT pin high or low time                                             | 25<br>40                           | _       | _          | ns<br>ns | PIC16C62X(A)<br>PIC16LC62X(A)<br>PIC16CR62XA<br>PIC16LCR62XA |
| 23               | Trbp         | RB<7:4> change interrupt high or low time                                | TCY                                | —       |            | ns       |                                                              |

# TABLE 12-4: CLKOUT AND I/O TIMING REQUIREMENTS

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

# INDEX

| Α                      |    |
|------------------------|----|
| ADDLW Instruction      | 63 |
| ADDWF Instruction      | 63 |
| ANDLW Instruction      | 63 |
| ANDWF Instruction      | 63 |
| Architectural Overview | 9  |
| Assembler              |    |
| MPASM Assembler        | 75 |
| В                      |    |

| 8                                 |    |
|-----------------------------------|----|
| BCF Instruction                   | 64 |
| Block Diagram                     |    |
| TIMER0                            |    |
| TMR0/WDT PRESCALER                |    |
| Brown-Out Detect (BOD)            | 50 |
| BSF Instruction                   |    |
| BTFSC Instruction                 | 64 |
| BTFSS Instruction                 | 65 |
| С                                 |    |
| C Compilers                       |    |
| MPLAB C17                         |    |
| MPLAB C18                         |    |
| MPLAB C30                         |    |
| CALL Instruction                  | 65 |
| Clocking Scheme/Instruction Cycle |    |
| CLRF Instruction                  |    |
| CLRW Instruction                  |    |
| CLRWDT Instruction                |    |
|                                   |    |

| C Compilers                       |    |
|-----------------------------------|----|
| MPLAB C17                         | 76 |
| MPLAB C18                         | 76 |
| MPLAB C30                         |    |
| CALL Instruction                  |    |
| Clocking Scheme/Instruction Cycle | 12 |
| CLRF Instruction                  | 65 |
| CLRW Instruction                  |    |
| CLRWDT Instruction                |    |
| Code Protection                   | 60 |
| COMF Instruction                  |    |
| Comparator Configuration          |    |
| Comparator Interrupts             |    |
| Comparator Module                 |    |
| Comparator Operation              |    |
| Comparator Reference              |    |
| Configuration Bits                |    |
| Configuring the Voltage Reference |    |
| Crystal Operation                 |    |
|                                   |    |

# D

| Data Memory Organization14                   |
|----------------------------------------------|
| DC Characteristics                           |
| PIC16C717/770/771 88, 89, 90, 91, 96, 97, 98 |
| DECF Instruction                             |
| DECFSZ Instruction                           |
| Demonstration Boards                         |
| PICDEM 1                                     |
| PICDEM 17                                    |
| PICDEM 18R PIC18C601/80179                   |
| PICDEM 2 Plus78                              |
| PICDEM 3 PIC16C92X                           |
| PICDEM 4                                     |
| PICDEM LIN PIC16C43X79                       |
| PICDEM USB PIC16C7X579                       |
| PICDEM.net Internet/Ethernet                 |
| Development Support75                        |
| E                                            |
| Errata                                       |
| Evaluation and Programming Tools             |
| External Crystal Oscillator Circuit          |
| G                                            |
| General purpose Register File                |
| GOTO Instruction                             |

| I                                                                        |    |
|--------------------------------------------------------------------------|----|
| I/O Ports                                                                |    |
| I/O Programming Considerations                                           |    |
| ID Locations                                                             |    |
| INCF Instruction                                                         |    |
| INCFSZ Instruction<br>In-Circuit Serial Programming                      |    |
| Indirect Addressing, INDF and FSR Registers                              |    |
| Instruction Flow/Pipelining                                              |    |
| Instruction Set                                                          |    |
| ADDLW                                                                    | 63 |
| ADDWF                                                                    |    |
| ANDLW                                                                    |    |
| ANDWF                                                                    |    |
| BCF                                                                      |    |
| BSF<br>BTFSC                                                             |    |
| BTFSS                                                                    |    |
| CALL                                                                     |    |
| CLRF                                                                     |    |
| CLRW                                                                     | 66 |
| CLRWDT                                                                   | 66 |
| COMF                                                                     |    |
| DECF                                                                     |    |
| DECFSZ                                                                   |    |
| GOTO                                                                     |    |
| INCFINCFSZ                                                               |    |
| INCI SZ                                                                  |    |
| IORWF                                                                    |    |
| MOVF                                                                     |    |
| MOVLW                                                                    | 68 |
| MOVWF                                                                    | 69 |
| NOP                                                                      |    |
| OPTION                                                                   |    |
| RETFIE                                                                   |    |
| RETLW<br>RETURN                                                          |    |
| RLF                                                                      |    |
| RRF                                                                      |    |
| SLEEP                                                                    |    |
| SUBLW                                                                    |    |
| SUBWF                                                                    | 72 |
| SWAPF                                                                    | 73 |
| TRIS                                                                     |    |
| XORLW                                                                    |    |
| XORWF                                                                    |    |
| Instruction Set Summary<br>INT Interrupt                                 |    |
| INTCON Register                                                          |    |
| Interrupts                                                               |    |
| IORLW Instruction                                                        |    |
| IORWF Instruction                                                        |    |
| Μ                                                                        |    |
| MOVF Instruction                                                         | 69 |
| MOVLW Instruction                                                        |    |
| MOVWF Instruction                                                        | 69 |
| MPLAB ASM30 Assembler, Linker, Librarian                                 | 76 |
| MPLAB ICD 2 In-Circuit Debugger                                          |    |
| MPLAB ICE 2000 High Performance Universal                                |    |
| In-Circuit Emulator                                                      | 77 |
| MPLAB ICE 4000 High Performance Universal                                | 77 |
| In-Circuit Emulator<br>MPLAB Integrated Development Environment Software |    |
| MPLINK Object Linker/MPLIB Object Librarian                              |    |
|                                                                          |    |

# **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

| To:      | Technical Publications Manag        | er Total Pages Sent                                       |
|----------|-------------------------------------|-----------------------------------------------------------|
| RE:      | Reader Response                     |                                                           |
| From     | n: Name                             |                                                           |
|          | Company                             |                                                           |
|          | Address                             |                                                           |
|          |                                     |                                                           |
|          | Telephone: ()                       | FAX: ()                                                   |
| Appl     | ication (optional):                 |                                                           |
| Wou      | ld you like a reply?YN              |                                                           |
| Devi     | ce: PIC16C62X                       | _iterature Number: DS30235J                               |
| Que      | stions:                             |                                                           |
| 1. \     | What are the best features of this  | document?                                                 |
| -        |                                     |                                                           |
| <u>-</u> |                                     |                                                           |
| 2. I     | How does this document meet yo      | ur hardware and software development needs?               |
| -        |                                     |                                                           |
| 3. [     | Do you find the organization of thi | s document easy to follow? If not, why?                   |
| _        |                                     |                                                           |
| _        |                                     |                                                           |
| 4. \     | What additions to the document d    | o you think would enhance the structure and subject?      |
| -        |                                     |                                                           |
| -        |                                     |                                                           |
| 5. \     | What deletions from the documen     | t could be made without affecting the overall usefulness? |
| -        |                                     |                                                           |
| -<br>6 I | s there any incorrect or misleadir  | a information (what and where)?                           |
| 0. 1     |                                     |                                                           |
| -        |                                     |                                                           |
| 7. H     | How would you improve this docu     | ment?                                                     |
| _        |                                     |                                                           |
| -        |                                     |                                                           |
|          |                                     |                                                           |

# **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Device     Frequency<br>Range     Temperature<br>Range       Device     PIC16C62X: VDD range 3.0<br>PIC16C62XT: VDD range 3.0<br>PIC16C62XA: VDD range 3.0<br>PIC16C7620A: VDD range 3.0<br>PIC16C7 | <u>/XX</u>                                                                                                                                                                                           | <u>ka xxx</u>                                                                                                                                               | Examples:                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rcl} \mbox{PiC16C62XT: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 3} \\ \mbox{PiC16C62XA: VDD range 2} \\ \mbox{PiC16LC62XT: VDD range 2} \\ \mbox{PiC16LC62XA: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\ \mbox{PiC16CR620A: VDD range 2} \\ \mbox{PiC16LC620AT: VDD range 2} \\ \mbox{PiC16LC620A: VDD range 2} \\$                                                                                     | Package                                                                                                                                                                                              | kage Pattern                                                                                                                                                | <ul> <li>a) PIC16C621A - 04/P 301 = Commercial temp.,</li> <li>PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.</li> </ul> |
| 04         4 MHz (XT and RC os<br>20           20         20 MHz (HS osc)           Temperature Range         -           I         -40°C to +70°C           I         -40°C to +85°C           E         -40°C to +125°C           Package         P           Package         P           SO         =           SO         =           SO         =           SO         =           SOP (Gull Wing<br>SS         =           SOP (209 mil)         =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0V to 6.0V (Tap<br>.0V to 5.5V<br>3.0V to 5.5V (Ta<br>5.5V to 6.0V<br>2.5V to 6.0V (Ta<br>2.5V to 5.5V<br>2.5V to 5.5V (Ta<br>2.5V to 5.5V (Ta<br>2.5V to 5.5V)<br>2.5V to 5.5V (Ta<br>2.5V to 5.5V) | .0V (Tape and Reel)<br>.5V<br>5.5V (Tape and Reel)<br>.0V<br>6.0V (Tape and Reel)<br>5.5V<br>5.5V (Tape and Reel)<br>5.5V<br>5.5V (Tape and Reel)<br>0.5.5V | b) PIC16LC622-04I/SO = Industrial temp., SOIC<br>package, 200 kHz, extended VDD limits.                                             |
| Package P = PDIP<br>SO = SOIC (Gull Wing<br>SS = SSOP (209 mil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c)                                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                     |
| SO = SOIC (Gull Wing<br>SS = SSOP (209 mil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      | nil body)                                                                                                                                                   |                                                                                                                                     |
| Pattern 3-Digit Pattern Code for QT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P (blank otherw                                                                                                                                                                                      | k otherwise)                                                                                                                                                |                                                                                                                                     |

\* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

#### Sales and Support

#### **Data Sheets**

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

#### **New Customer Notification System**

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.