

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc622at-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C62X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the Oscillator modes.

Microchip's PICSTART[®] and PRO MATE[®] programmers both support programming of the PIC16C62X.

Note: Microchip does not recommend code protecting windowed devices.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Productionsm (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

4.2 Data Memory Organization

The data memory (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7) is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bank 0 is selected when the RP0 bit is cleared. Bank 1 is selected when the RP0 bit (STATUS <5>) is set. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20-7Fh (Bank0) on the PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and A0-BFh (Bank1) on the PIC16C622 and PIC16C622A are General Purpose Registers implemented as static RAM. Some Special Purpose Registers are mapped in Bank 1.

Addresses F0h-FFh of bank1 are implemented as common ram and mapped back to addresses 70h-7Fh in bank0 on the PIC16C620A/621A/622A/CR620A.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80 x 8 in the PIC16C620/621, 96 x 8 in the PIC16C620A/621A/CR620A and 128 x 8 in the PIC16C622(A). Each is accessed either directly or indirectly through the File Select Register FSR (Section 4.4).

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C620/621

File			File
Address	3		Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh			9Eh
1Fh	CMCON	VRCON	9Fh
20h		_	A0h
	General		
	Purpose Register		
6Fh	5		
70h			
7Fh			FFh
	Bank 0	Bank 1	
—		1 4	
Unimp	plemented data me	mory locations, r	ead as '0'.
Note 1:	Not a physical re	egister.	

FIGURE 4-5:

DATA MEMORY MAP FOR THE PIC16C622

	1116							
File Address	8		File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR	84h					
05h	PORTA	TRISA	85h					
06h	PORTB	TRISB	86h					
00h	TOILID	TRIOD	87h					
07h 08h			88h					
00h			89h					
03h 0Ah	PCLATH	PCLATH	8Ah					
0An 0Bh	INTCON	INTCON	8Bh					
0Dh	PIR1	PIE1	8Ch					
0Ch 0Dh	PIRI	PIEI	8Dh					
		PCON						
0Eh 0Fh		PCON	8Eh					
			8Fh					
10h			90h					
11h			91h					
12h			92h					
13h			93h					
14h			94h					
15h			95h					
16h			96h					
17h			97h					
18h			98h					
19h			99h					
1Ah			9Ah					
1Bh			9Bh					
1Ch			9Ch					
1Dh			9Dh					
1Eh			9Eh					
1Fh	CMCON	VRCON	9Fh					
20h			A0h					
	General Purpose	General Purpose						
	Register	Register						
	0	5	BFh					
			C0h					
7Fh			FFh					
, , , , , ,	Bank 0 Bank 1							
Unim	plemented data me	mory locations, re	ad as '0'.					
Note 1:	Not a physical re	aister						

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any STATUS bit. For other instructions not affecting any STATUS bits, see the "Instruction Set Summary".

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C62X and should be programmed as '0'. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)

	Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	-	ter Bank Sel	-	d for indirect	addressing)		
		, 3 (100h - 1 , 1 (00h - FF						
		t is reserved		16C62X; alv	/ays maintai	n this bit cle	ar.	
bit 6-5		Register Ban			-			
		1 (80h - FFh						
		0 (00h - 7Fh						
	Each bank clear.	is 128 bytes	5. The RP1 t	oit is reserve	ed on the PIC	C16C62X; a	lways mainta	ain this bit
bit 4	TO: Time-c	out bit						
			RWDT instruc	ction. or SLE	EP instruction	on		
 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred 								
bit 3	PD: Power	-down bit						
	-	ower-up or b cution of the	-		n			
bit 2	Z: Zero bit							
		sult of an arit sult of an arit)		
bit 1		arry/borrow b		• •)(for borrow	the polarity
	is reversed	-	ζ ,		·			
		-out from the				rred		
		ry-out from th						
bit 0	•	orrow bit (AD						
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 							
	Note:	For borrow t	he polarity i	s reversed.	A subtraction	on is execut	ed by addin	g the two's
		complement						s, this bit is
		loaded with e	either the hig	gh or low or	der bit of the	source reg	ister.	
	Legend:	L. L. 14					hit as a d	0
	R = Reada			ritable bit		•	bit, read as	
	- n = Value	at POR	1′ = Bi	it is set	'0' = Bit i	scleared	x = Bit is u	nknown

OPTION Register 4.2.2.2

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1).

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7					•		bit 0
bit 7	RBPU: PO	RTB Pull-u	p Enable bi	it				
		3 pull-ups ai 3 pull-ups ai		y individual	port latch va	alues		
bit 6	INTEDG: I	nterrupt Edg	e Select bit	-				
			edge of RB0 edge of RB0					
bit 5	TOCS: TMI	R0 Clock Sc	ource Select	bit				
		ion on RA4/ Il instruction	T0CKI pin cycle clock	(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	Edge Select	bit				
				ition on RA4 ition on RA4				
bit 3	PSA: Pres	caler Assigr	ment bit		-			
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 							
bit 2-0	PS<2:0> : [Prescaler Ra	ate Select bi	ts				
	E	Bit Value T	MR0 Rate	WDT Rate				
	-	0000001	1:2 1:4	1:1 1:2				
		010 011	1 : 8 1 : 16	1:4 1:8				
100 1:32 1:16								
		101	1:64	1:32				
		110	1:128	1:64				
111 1 : 256 1 : 128								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOR is unknown on Power-on Reset. It				
	must then be set by the user and checked				
	on subsequent RESETS to see if BOR is				
	cleared, indicating a brown-out has				
	occurred. The BOR STATUS bit is a "don't				
	care" and is not necessarily predictable if				
	the brown-out circuit is disabled (by				
	programming BODEN bit in the				
	Configuration word).				

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ſ	—	—	—	—	—	—	POR	BOR
-	bit 7							bit 0

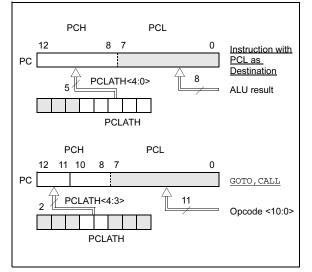
bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset STATUS bit

- 1 = No Power-on Reset occurred
- 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOR**: Brown-out Reset STATUS bit

1 = No Brown-out Reset occurred


0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-8 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-8: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16C62X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-2 and Figure 4-3). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

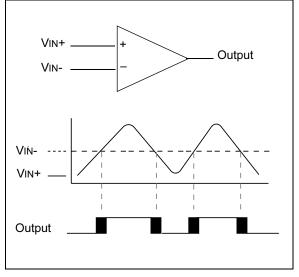
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

The code example in Example 7-1 depicts the steps required to configure the comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 7-1: INITIALIZING COMPARATOR MODULE

MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY 10	;10µs delay
MOVF	CMCON,F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable


7.2 Comparator Operation

A single comparator is shown in Figure 7-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 7-2 represent the uncertainty due to input offsets and response time.

7.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-2).

7.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

7.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10, Instruction Sets, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 7-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

9.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

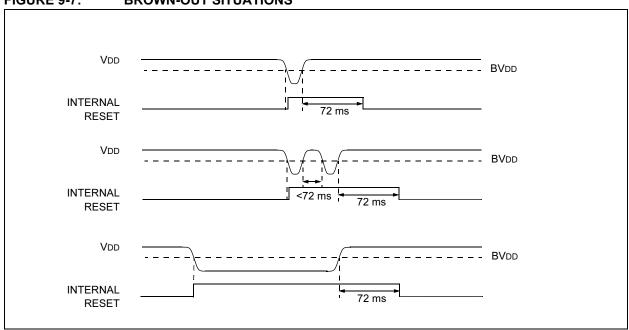
9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The Power-up Time delay will vary from chip-to-chip and due to VDD, temperature and process variation. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

The PIC16C62X members have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V refer to VBOR parameter D005 (VBOR) for greater than parameter (TBOR) in Table 12-5. The brown-out situation will RESET the chip. A RESET won't occur if VDD falls below 4.0V for less than parameter (TBOR).

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above BVDD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-7 shows typical Brown-out situations.

FIGURE 9-7: BROWN-OUT SITUATIONS

TABLE 9-6: SUMMARY OF INTERRUPT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	CMIF	—	—	—	—	—	—	-0	-0
8Ch	PIE1	_	CMIE	_	_	—	_	—	_	-0	-0

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 9-3 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 9-3:

- · Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 9-3: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, ;could be in either bank
SWAPF	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regardless ;of current bank
MOVWF	STATUS_TEMP	;save status to bank 0 ;register
:		
:	(ISR)	
:		
SWAPF	STATUS_TEMP, W	;swap STATUS_TEMP register ;into W, sets bank to origi- nal ;state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

9.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

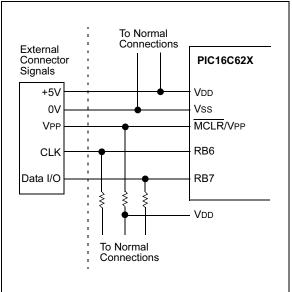
Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	evices.	

9.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify. Only the Least Significant 4 bits of the ID locations are used.

9.11 In-Circuit Serial Programming™

The PIC16C62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X/9XX Programming Specification (DS30228).

A typical In-Circuit Serial Programming connection is shown in Figure 9-19.

FIGURE 9-19:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

DECFSZ	Decrement f, Skip if 0								
Syntax:	[<i>label</i>] DECFSZ f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0								
Status Affected:	None								
Encoding:	00 1011 dfff ffff								
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.								
Words:	1								
Cycles:	1(2)								
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •								
	$\begin{array}{rcl} PC &=& address \ {\tt HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \ {\tt CONTINUE} \\ \mbox{if CNT} \neq& 0, \\ PC &=& address \ {\tt HERE} + 1 \\ \end{array}$								
GOTO	Unconditional Branch								
Syntax:	[<i>label</i>] GOTO k								
Operands:	$0 \le k \le 2047$								
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>								
Status Affected:	None								
Encoding:	10 1kkk kkkk kkkk								
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.								
Words:	1								
Cycles:	2								
Example	GOTO THERE								
	After Instruction PC = Address THERE								

INCF	Increment f							
Syntax:	[<i>label</i>] INCF f,d							
Operands:	$0 \le f \le 127$ d $\in [0,1]$							
Operation:	(f) + 1 \rightarrow (dest)							
Status Affected:	Z							
Encoding:	00 1010 dfff ffff							
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
Words:	1							
Cycles:	1							
Example	INCF CNT, 1							
	Before Instruction CNT =0xFFZ=0After Instruction CNT =0x00Z=1							

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended)

PIC16C62XA PIC16LC62XA				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial and $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $= TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial and $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for extended						
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	its Conditions			
D001	Vdd	Supply Voltage	3.0	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D001	Vdd	Supply Voltage	2.5	_	5.5	V	See Figures 12-1, 12-2, 12-3, 12-4, and 12-5			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*		V	Device in SLEEP mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	_	V	See section on Power-on Reset for details			
D003	VPOR	VDD start voltage to ensure Power-on Reset		Vss	—	V	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			
D005	VBOR	Brown-out Detect Voltage	3.7	4.0	4.35	V	BOREN configuration bit is cleared			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)

PIC16C62XA PIC16LC62XA			Oper Stand Oper	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial an -40° C \leq TA \leq +125°C for extendedStandard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial an -40° C \leq TA \leq +125°C for extended							
Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions				
D010	IDD	Supply Current ^(2, 4)	_	1.2 0.4 1.0	2.0 1.2 2.0	mA mA mA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 3.0V, WDT disabled, XT mode, (Note 4)* Fosc = 10 MHz, VDD = 3.0V, WDT dis-				
			_	4.0	6.0 7.0	mA mA	abled, HS mode, (Note 6) Fosc = 20 MHz, VDD = 4.5V, WDT dis- abled, HS mode Fosc = 20 MHz, VDD = 5.5V, WDT dis-				
			_	35	70	μA	abled*, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled, LP mode				
D010	IDD	Supply Current ⁽²⁾	_	1.2 — 35	2.0 1.1 70	mA mA μA	Fosc = 4 MHz, VDD = 5.5V, WDT disabled, XT mode, (Note 4)* Fosc = 4 MHz, VDD = 2.5V, WDT disabled, XT mode, (Note 4) Fosc = 32 kHz, VDD = 2.5V, WDT dis-				
D020	IPD	Power-down Current ⁽³⁾			2.2 5.0 9.0 15	μΑ μΑ μΑ μΑ	VDD = 3.0V VDD = 4.5V* VDD = 5.5V VDD = 5.5V Extended Temp.				
D020	IPD	Power-down Current ⁽³⁾		 	2.0 2.2 9.0 15	μΑ μΑ μΑ μΑ	VDD = 2.5V VDD = 3.0V* VDD = 5.5V VDD = 5.5V Extended Temp.				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

PIC16C62X

12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended) PIC16C62XA-20 (Commercial, Industrial, Extended) PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)

PIC16C	62XA		Oper	ating te	mpera	ature -4 -4	ditions (unless otherwise stated) $40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial and $40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
PIC16LC62XA					ature -4	$\begin{array}{ll} \mbox{ditions (unless otherwise stated)} \\ \mbox{H} 0^{\circ} C &\leq T A \leq +85^{\circ} C \mbox{ for industrial and} \\ \mbox{0}^{\circ} C &\leq T A \leq +70^{\circ} C \mbox{ for commercial and} \\ \mbox{0}^{\circ} C &\leq T A \leq +125^{\circ} C \mbox{ for extended} \end{array}$	
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D022	ΔIWDT	WDT Current ⁽⁵⁾	—	6.0	10 12	μA μA	VDD = 4.0V (125°C)
D022A D023	Δ IBOR Δ ICOMP	Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾	_	75 30	125 60	μA μA	BOD enabled, VDD = 5.0V VDD = 4.0V
D023A	$\Delta I V REF$	VREF Current ⁽⁵⁾	—	80	135	μA	VDD = 4.0V
D022 D022A D023	ΔIWDT ΔIBOR ΔICOMP	WDT Current ⁽⁵⁾ Brown-out Reset Current ⁽⁵⁾ Comparator Current for each Comparator ⁽⁵⁾		6.0 75 30	10 12 125 60	μΑ μΑ μΑ	VDD=4.0V (125°C) BOD enabled, VDD = 5.0V VDD = 4.0V
D023A	Δ IVREF	VREF Current ⁽⁵⁾	_	80	135	μA	VDD = 4.0V
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures
1A	Fosc	LP Oscillator Operating Frequency RC Oscillator Operating Frequency XT Oscillator Operating Frequency HS Oscillator Operating Frequency	0 0 0 0		200 4 4 20	kHz MHz MHz MHz	All temperatures All temperatures All temperatures All temperatures

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40⁽⁷⁾ (Commercial) PIC16CR620A-40⁽⁷⁾ (Commercial)

DC CH	IARAC	TERISTICS		-	-		(unless otherwise stated) A ≤ +70°C for commercial
Param No.	Sym	Characteristic	Min	Тур†	Мах	Unit	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	_	0.8V 0.15Vdd	V	VDD = 4.5V to 5.5V, otherwise
D031		with Schmitt Trigger input	Vss		0.2VDD	V	
D032		MCLR, RA4/T0CKI, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	(Note 1)
D033		OSC1 (in XT and HS)	Vss	_	0.3VDD	V	
		OSC1 (in LP)	Vss	_	0.6Vdd - 1.0	V	
	Vih	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V, otherwise
			0.25 VDD + 0.8		Vdd		
D041		with Schmitt Trigger input	0.8 VDD		Vdd		
D042		MCLR RA4/T0CKI	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT, HS and LP)	0.7 Vdd	—	Vdd	V	
D043A		OSC1 (in RC mode)	0.9 VDD				(Note 1)
D070	IPURB	PORTB Weak Pull-up Current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ^(2, 3)					
		I/O ports (except PORTA)			±1.0	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D060		PORTA	—	—	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \le VPIN \le VDD$
D063		OSC1, MCLR	_	—	±5.0	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C
			_	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, +125°C
D083		OSC2/CLKOUT (RC only)	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C
					0.6	V	IOL = 1.2 mA, VDD = 4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports (except RA4)	VDD-0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C
			VDD-0.7	_	—	V	ІОН = -2.5 mA, VDD = 4.5V, +125°C
D092		OSC2/CLKOUT (RC only)	VDD-0.7	_	—	V	IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C
			VDD-0.7	-	—	V	Іон = -1.0 mA, Vdd = 4.5V, +125°C
*D150	Vod	Open Drain High Voltage			8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.
D101	Cio	All I/O pins/OSC2 (in RC mode)			50	pF	
		parameters are characterized but not	<u> </u>	1	~~	۳.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
 The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in bi-impedance state and tied to VDD or VSS.

mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/ 2REXT (mA) with REXT in kΩ.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: Commercial temperature range only.

7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified characteristics.

12.6 DC Characteristics:

PIC16C620A/C621A/C622A-40⁽³⁾ (Commercial) PIC16CR620A-40⁽³⁾ (Commercial)

DC CHARACTERISTICS Power Supply Pins				Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial				
Characteristic	Sym	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
Supply Voltage	Vdd	4.5	—	5.5	V	HS Option from 20 - 40 MHz		
Supply Current ⁽²⁾	IDD	_	5.5 7.7	11.5 16	mA mA	Fosc = 40 MHz, VDD = 4.5V, HS mode Fosc = 40 MHz, VDD = 5.5V, HS mode		
HS Oscillator Operating Frequency	Fosc	20	_	40	MHz	OSC1 pin is externally driven, OSC2 pin not connected		
Input Low Voltage OSC1	VIL	Vss	—	0.2Vdd	V	HS mode, OSC1 externally driven		
Input High Voltage OSC1	Vih	0.8Vdd		Vdd	V	HS mode, OSC1 externally driven		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in Active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss,

T0CKI = VDD, \overline{MCLR} = VDD; WDT disabled, HS mode with OSC2 not connected.

3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

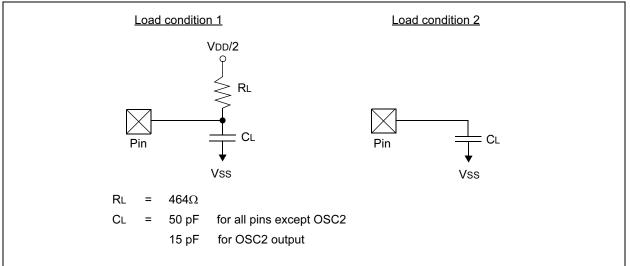
12.7 AC Characteristics: PIC16C620A/C621A/C622A-40⁽²⁾ (Commercial) PIC16CR620A-40⁽²⁾ (Commercial)

AC CHARACTERISTICS All Pins Except Power Supply Pir		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial				
Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
External CLKIN Frequency	Fosc	20	—	40	MHz	HS mode, OSC1 externally driven
External CLKIN Period	Tosc	25	_	50	ns	HS mode (40), OSC1 externally driven
Clock in (OSC1) Low or High Time	TosL, TosH	6	—		ns	HS mode, OSC1 externally driven
Clock in (OSC1) Rise or Fall Time	TosR, TosF		_	6.5	ns	HS mode, OSC1 externally driven
OSC1↑ (Q1 cycle) to Port out valid	TosH2ıoV		—	100	ns	_
OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TosH2iol	50	—	_	ns	—

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.

12.8 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

2. Tpp3			
т			
F	Frequency	Т	Time
Lowerca	ase subscripts (pp) and their meanings:		
рр			
ck	CLKOUT	osc	OSC1
io	I/O port	t0	ТОСКІ
mc	MCLR		
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-Impedance

FIGURE 12-11: LOAD CONDITIONS

13.0 DEVICE CHARACTERIZATION INFORMATION

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution, while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

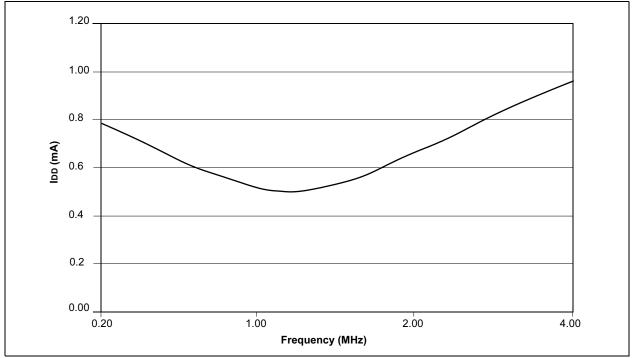
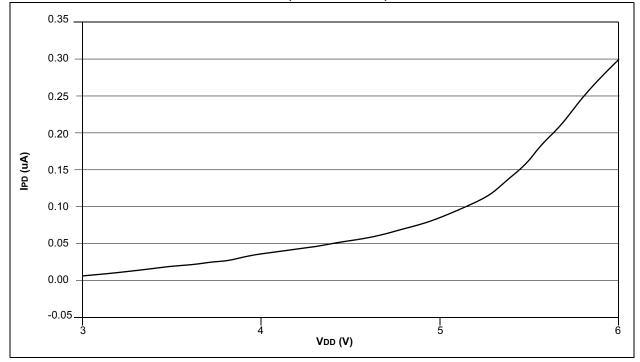



FIGURE 13-1: IDD VS. FREQUENCY (XT MODE, VDD = 5.5V)

FIGURE 13-2: PIC16C622A IPD VS. VDD (WDT DISABLE)

© 2003 Microchip Technology Inc.

PIC16C62X

N
NOP Instruction
0
One-Time-Programmable (OTP) Devices7
OPTION Instruction
OPTION Register
Oscillator Configurations
Oscillator Start-up Timer (OST)
Р
Package Marking Information117
Packaging Information113
PCL and PCLATH
PCON Register
PICkit 1 FLASH Starter Kit
PICSTART Plus Development Programmer77
PIE1 Register
PIR1 Register21
Port RB Interrupt
PORTA25
PORTB
Power Control/Status Register (PCON)51
Power-Down Mode (SLEEP)59
Power-On Reset (POR)
Power-up Timer (PWRT)50
Prescaler
PRO MATE II Universal Device Programmer
Program Memory Organization
Q
Quick-Turnaround-Production (QTP) Devices7
R
RC Oscillator
Reset
RETFIE Instruction70
RETLW Instruction70
RETURN Instruction70
RLF Instruction71
RRF Instruction71
S

S

Serialized Quick-Turnaround-Production (SQTP) Devices 7	7
SLEEP Instruction71	1
Software Simulator (MPLAB SIM)76	
Software Simulator (MPLAB SIM30)76	6
Special Features of the CPU45	5
Special Function Registers17	7
Stack	3
Status Register18	3
SUBLW Instruction72	2
SUBWF Instruction72	2
SWAPF Instruction	3

Т

Timer0	
TIMER0	
TIMER0 (TMR0) Interrupt	
TIMER0 (TMR0) Module	
TMR0 with External Clock	
Timer1	
Switching Prescaler Assignment	
Timing Diagrams and Specifications	104
TMR0 Interrupt	56
TRIS Instruction	73
TRISA	25
TRISB	

V

Voltage Reference Module VRCON Register	
W	
Watchdog Timer (WDT)	. 58
WWW, On-Line Support	3
X	
XORLW Instruction	. 73
XORWF Instruction	. 73