E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 31x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dn512vlk10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2.3 Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	—	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	-	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	-	1	μA	1
I _{IN}	Input leakage current (per pin) at 25°C	—	0.025	μΑ	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

 Table 4. Voltage and current operating behaviors

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	1
	• VLLS1 → RUN	_	112	μs	
	VLLS2 → RUN	_	74	μs	
	• VLLS3 → RUN	_	73	μs	
	• LLS → RUN	_	5.9	μs	
	VLPS → RUN	_	5.8	μs	
	• STOP → RUN	_	5	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V		37 38	63 64	mA mA	2
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V • @ 3.0V • @ 25°C • @ 125°C		46 47 58	77 63 79	mA mA mA	3, 4
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		20	_	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		9		mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	1.12	—	mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled		1.71	_	mA	7

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	0.77	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V				mA	
	• @ -40 to 25°C	—	0.74	1.41	mA	
	• @ 70°C	—	2.45	11.5	mA	
	• @ 105°C	—	6.61	30		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ –40 to 25°C	_	83	435	μA	
	• @ 70°C	_	425	2000	μA	
	• @ 105°C	_	1280	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	• @40 to 25°C	_	4.58	19.9	μA	
	• @ 70°C	_	30.6	105	μA	
	• @ 105°C	_	137	500	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	● @ -40 to 25°C	_	3.0	23	μA	
	• @ 70°C	_	18.6	43	μA	
	• @ 105°C	_	84.9	230	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	● @ -40 to 25°C	_	2.2	5.4	μA	
	• @ 70°C	_	9.3	35	μA	
	• @ 105°C	_	41.4	128	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ –40 to 25°C	_	2.1	9	μA	
	• @ 70°C	—	7.6	28	μA	
	• @ 105°C	_	33.5	95.5	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C	_	0.19	0.22	uА	
	• @ 70°C	_	0.49	0.64	uA	
	• @ 105°C	_	2.2	3.2	μA	
					•	

Table 6. Power consumption operating behaviors (continued)

Figure 4. Trace data specifications

6.1.2 JTAG electricals

Table 13.	JTAG limited	voltage range	electricals
		vonage range	cicotiiouis

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1	—	ns
J11	TCLK low to TDO data valid	—	17	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Symbol	Description	Min.	Max.	Unit
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50		ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns
J6	Boundary scan input data hold time after TCLK rise	0		ns
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1.4		ns
J11	TCLK low to TDO data valid	—	22.1	ns
J12	TCLK low to TDO high-Z	—	22.1	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals (continued)

Figure 5. Test clock input timing

Peripheral operating requirements and behaviors

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf _{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1
Δf _{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 0.3	± 3	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C		4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}		—	kHz	
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11	(16/5) x f _{ints_t}			kHz	

Table 15. MCG specifications

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		F	LL				
f _{fll_ref}	FLL reference frec	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 $\times f_{fill ref}$	60	62.91	75	MHz	-
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	-
f _{dco_t_DMX32}	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}	-	23.99	—	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	_	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll_ref}	_	71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	_	MHz	
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	 f_{VCO} = 48 MHz f_{VCO} = 98 MHz 		_	150	_		
t _{fll_acquire}	FLL target frequer	ncy acquisition time	—	—	1	ms	6
	1	Р	LL		1		I
f _{vco}	VCO operating fre	quency	48.0		100	MHz	
I _{pll}	PLL operating curi PLL @ 96 N 2 MHz, VDIV	rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μA	7
I _{pll}	PLL operating curi PLL @ 48 N 2 MHz, VDN	rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 24)	_	600	_	μA	7
f _{pll_ref}	PLL reference free	quency range	2.0		4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	Iz	_	120	_	ps	
	• f _{vco} = 100 M	Hz	_	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					8
	• f _{vco} = 48 MH	lz	_	1350	_	ps	
	• f _{vco} = 100 M	Hz	_	600	_	ps	
D _{lock}	Lock entry frequer	ncy tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequence	y tolerance	± 4.47	—	± 5.97	%	

Table 15. MCG specifications (continued)

• 8 MHz (RANGE=01)

• 16 MHz

• 24 MHz

• 32 MHz

mode (HGO=0)

mode (HGO=1)

mode (HGO=0)

mode (HGO=1)

mode (HGO=0)

mode (HGO=0)

mode (HGO=1)

(HGO=1)

(HGO=0)

(HGO=1)

(HGO=0)

(HGO=1)

EXTAL load capacitance

XTAL load capacitance

Feedback resistor — low-frequency, low-power

Feedback resistor — low-frequency, high-gain

Feedback resistor — high-frequency, low-power

Feedback resistor — high-frequency, high-gain

Series resistor - low-frequency, high-gain mode

Series resistor - low-frequency, low-power

Series resistor - high-frequency, low-power

Series resistor — high-frequency, high-gain

Peak-to-peak amplitude of oscillation (oscillator

Peak-to-peak amplitude of oscillation (oscillator

Peak-to-peak amplitude of oscillation (oscillator

Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode

mode) — high-frequency, low-power mode

mode) - low-frequency, low-power mode

mode) — low-frequency, high-gain mode

Cx

Cv

 R_F

 R_S

V_{pp}⁵

Table 16. Oscillator DC electrical specifications (continued)								
Symbol	Description	Min.	Тур.	Max.	Unit	Notes		
IDDOSC	Supply current — high gain mode (HGO=1)					1		
	• 32 kHz	_	25	_	μA			
	• 4 MHz	_	400	_	μA			

500

2.5

3

4

10

1

200

0

0.6

V_{DD}

0.6

 V_{DD}

_

μA

mΑ

mΑ

mΑ

MΩ

MO

MΩ

MΩ

kΩ

kΩ

kΩ

kΩ

V

V

V

٧

2.3

2, 3

2, 4

1	$V_{DD}=3.3 V$	Temperature =25	°C
1.	v _{DD} -0.0 v,	Temperature –23	U

2. See crystal or resonator manufacturer's recommendation

- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Symbol	Description	Min.	Тур.	Max.	Unit
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6	_	V

Table 18. 32kHz oscillator DC electrical specifications (continued)

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32kHz oscillator frequency specifications Table 19. 32kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	—	1000		ms	1
f _{ec_extal32}	Externally provided input clock frequency	_	32.768	_	kHz	2
V _{ec_extal32}	Externally provided input clock amplitude	700		V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk256k}	Erase Block high-voltage time for 256 KB	—	104	904	ms	1

 Table 20.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.4 Reliability specifications Table 23. NVM reliability specifications

Symbol	Description		Typ. ¹	Max.	Unit	Notes
Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.

6.4.2 EzPort Switching Specifications Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	—	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}		ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5		ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5		ns
EP5	EZP_D input valid to EZP_CK high (setup)	2		ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	—	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

Figure 9. EzPort Timing Diagram

6.4.3 Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	20	_	ns	
FB2	Address, data, and control output valid	—	11.5	ns	1
FB3	Address, data, and control output hold	0.5	_	ns	1
FB4	Data and FB_TA input setup	8.5	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

Table 25. Flexbus limited voltage range switching specifications

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

Peripheral operating requirements and behaviors

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	—	13.5	ns	1
FB3	Address, data, and control output hold	0	_	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5		ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}_{-}\text{TA}}.$

Peripheral operating requirements and behaviors

Figure 10. FlexBus read timing diagram

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
E _{IL}	Input leakage error		I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)	
	Temp sensor slope	Across the full temperature range of the device		1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	—	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Figure 18. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 34.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 44. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid			ns
	Multiple SAI Synchronous mode	—	21	
	All other modes	_	15	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 25. I2S/SAI timing — slave modes

6.8.7.2 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Table 45. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page...

Table 45. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit	
S1	I2S_MCLK cycle time	40	—	ns	
S2	I2S_MCLK pulse width high/low 45% 55% MCLK period				
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns			
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period	
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	15	ns	
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	_	ns	
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns	
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns	
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	-	ns	
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns	

Figure 26. I2S/SAI timing — master modes

Table 46.I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit	
	Operating voltage	1.71	3.6	V	
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns	
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period	

Table 48. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	-	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	3	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	63	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 29. I2S/SAI timing — slave modes

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 49. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	_	8	15	MHz	2, 3
f _{ELEmax}	Electrode oscillator frequency	—	1	1.8	MHz	2, 4

Table continues on the next page...

Revision History

Rev. No.	Date	Substantial Changes
1	6/2012	Initial public revision
2	12/2012	Replaced TBDs throughout.

Table 50. Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2012 Freescale Semiconductor, Inc.

Document Number: K10P81M100SF2V2 Rev. 2, 12/2012